Пример #1
0
def validate_sintel(sess, framework, dataset, path):
    tflearn.is_training(False, session=sess)
    validationImg1, validationImg2, validationFlow = zip(*dataset)
    validationSize = len(dataset)
    batchEpe = []
    c = 0
    for j in tqdm(range(0, validationSize, batchSize)):
        if j + batchSize <= validationSize:
            batchImg1 = [sintel.load(p) for p in validationImg1[j: j + batchSize]]
            batchImg2 = [sintel.load(p) for p in validationImg2[j: j + batchSize]]
            batchFlow = [sintel.load(p) for p in validationFlow[j: j + batchSize]]

        batchEpe.append(sess.run(framework.epe, framework.feed_dict(
            img1=batchImg1,
            img2=batchImg2,
            flow=batchFlow
        )))

        if (j // batchSize) % 5 == 0:
            batchPred = sess.run(framework.flow, framework.feed_dict(
                img1=batchImg1,
                img2=batchImg2,
                flow=batchFlow
            ))
            batchImg1 = batchImg1[::4]
            batchImg2 = batchImg2[::4]
            batchFlow = batchFlow[::4]
            batchPred = batchPred[::4]
            visualization.plot(batchImg1, batchImg2, batchFlow, batchPred, path, c)
            c += len(batchImg1)
    mean_epe = np.mean(batchEpe)
    return float(mean_epe)
Пример #2
0
def summary_analysis(data, chamber, param):
    step_l = list(set(data['step']))
    print(data['step'].value_counts())

    diff = {param: [], "current": [], "previous": []}
    index_l = {}
    # 각 step별 데이터들의 index 리스트
    for step in step_l:
        index_l[step] = list(data[data['step'] == step].index)

    for index in data.index:
        if index % 1000 == 0: print('processing ...', index)
        step = data.loc[index]['step']

        # 동일한 step을 가진 데이터 중 이전 주기 데이터
        previous_index = index_l[step].index(index) - 1
        if previous_index < 0: previous_index = 0
        previous_index = index_l[step][previous_index]

        current_value = data.loc[index][param]
        previous_value = data.loc[previous_index][param]

        diff["current"].append(current_value)
        diff["previous"].append(previous_value)

        diff[param].append(current_value - previous_value)

    diff_df = pd.DataFrame(diff)

    diff_df['time'] = data['time']
    diff_df['step'] = data['step']
    print(diff_df)
    vs.plot(diff_df, param, chamber, show=True, save=False, save_folder="")
Пример #3
0
def periodity_analysis(chamber):
    parameter = 'Ch C MFC 2 Flow x1000'
    df = pd.read_csv(parameter + " summary_by_step.csv")

    df['time'] = pd.to_datetime(df['time'])
    print(df)
    for step in df.columns[1:]:
        vs.plot(df, step, chamber, show=True, save=False, save_folder="")
Пример #4
0
def visualize(instrument, tensor_data, epoch, num_batch):
    for i in range(tensor_data.shape[0]):
        dimage = tensor_data.data[i].numpy()
        df = DataFrame(dimage, columns=['high', 'low', 'open', 'close'])
        plot(df,
             epoch,
             num_batch,
             i,
             instrument=instrument,
             generate=True,
             v=False)
Пример #5
0
 def solveLinear(self):
     solved = False
     i = 0
     while (not solved):
         xa, ya = self.updateW()
         i += 1
         if len(xa) == 0:
             solved = True
     print("Linearly Seperable:")
     print("Solved in " + str(i) + " epochs / " + str(self.updates) + \
           " updates:")
     print("W = " + str(self.w) + "\n")
     if self.visual:
         vis.plot(self.data.xp, self.data.yp, self.data.xn, self.data.yn,\
              xa, ya, self.w)
Пример #6
0
    def execute(input_file, op_exec):
        # pass
        """
        This function will help execute the tree
        """
        # input_file = viz.read_matrix(input_file)
        input_file = viz.csv_to_ts(input_file)
        input_file = prep.impute_missing_data(input_file)
        input_file = prep.impute_outliers(input_file)

        return_value = None
        if op_exec == "plot":
            return_value = viz.plot(input_file)
        elif op_exec == "histogram":
            return_value = viz.histogram(input_file)
        elif op_exec == "summary":
            return_value = viz.summary(input_file)
        elif op_exec == "box_plot":
            return_value = viz.box_plot(input_file)
        elif op_exec == "shapiro_wilk":
            return_value = viz.shapiro_wilk(input_file)
        elif op_exec == "d_agostino":
            return_value = viz.d_agostino(input_file)
        elif op_exec == "anderson_darling":
            return_value = viz.anderson_darling(input_file)
        elif op_exec == "qq_plot":
            return_value = viz.qq_plot(input_file)
        return return_value
Пример #7
0
 def solveNonlinear(self, epochs):
     solved = False
     epochstart = epochs
     xa, ya = [], []
     while (not solved and epochs > 0 and self.cError > 0.08):
         epochs -= 1
         xa, ya = self.updateW()
         if len(xa) == 0:
             solved = True
     print("Linearly Nonseperable:")
     print("Solution after " + str(epochstart-epochs) + " epochs / " + \
           str(self.updates) + " updates:")
     print("W = " + str(self.w))
     print(str(len(xa)) + " still misclassified. Error rate is " + \
           str(int(100*self.cError)) + "%\n")
     if self.visual:
         vis.plot(self.data.xp, self.data.yp, self.data.xn, self.data.yn,\
                  xa, ya, self.w)
Пример #8
0
def visualization(df, save_folder, chamber, show=True, save=False):
    # 실수 형식의 데이터만 분석
    for parameter in df.select_dtypes('number').columns:
        #line plot (by time)
        vs.plot(df,
                parameter,
                chamber,
                show=show,
                save=save,
                save_folder=save_folder)

        # scatter plot (by recipe)
        vs.scatter_plot(df,
                        parameter,
                        chamber,
                        group_by="Ch " + chamber + " Running Recipe",
                        show=show,
                        save=save,
                        save_folder=save_folder)

        # scatter plot (by step)
        vs.scatter_plot(df,
                        parameter,
                        chamber,
                        group_by="Ch " + chamber + " Step Number",
                        show=show,
                        save=save,
                        save_folder=save_folder)

        # box plot (by step)
        vs.box_plot(df,
                    parameter,
                    chamber,
                    group_by="Ch " + chamber + " Step Number",
                    show=show,
                    save=save,
                    save_folder=save_folder)

        # historam
        vs.histogram(df,
                     parameter,
                     show=show,
                     save=save,
                     save_folder=save_folder)
Пример #9
0
 def test(self, testdata):
     n_misclass = 0
     xa, ya = [], []
     for d in testdata.points:
         x = [d.coords[0]] + d.coords[1] + [d.coords[2]]
         if d.c > 0 and dot(self.w, x) < 0:
             n_misclass += 1
             xa.append(x[1])
             ya.append(x[-1])
         if d.c < 0 and dot(self.w, x) >= 0:
             n_misclass += 1
             xa.append(x[1])
             ya.append(x[-1])
     error = n_misclass / len(testdata.points)
     print("Testing:\nMisclassified: " + str(n_misclass), "Test Error: " + \
           str(int(100*error)) + "%")
     if self.visual:
         vis.plot(testdata.xp, testdata.yp, testdata.xn, testdata.yn,\
                  xa, ya, self.w)
Пример #10
0
def validate(sess, framework, model=None):
    tflearn.is_training(False, session=sess)
    batchEpe = []
    for j in range(0, validationSize, batchSize):
        if j + batchSize <= validationSize:
            batchImg1 = validationImg1[j: j + batchSize]
            batchImg2 = validationImg2[j: j + batchSize]
            batchFlow = validationFlow[j: j + batchSize]
            # batchGamma = [1.0] * batchSize
            # batchCropX = [32] * batchSize
            # batchCropY = [32] * batchSize
            # batchBrightness = [0.0] * batchSize
            # batchContrast = [1.0] * batchSize

        batchEpe.append(sess.run(framework.epe, framework.feed_dict(
            img1=batchImg1,
            img2=batchImg2,
            flow=batchFlow
        )))

        if model is not None and j == 0:
            batchPred = sess.run(framework.flow, framework.feed_dict(
                img1=batchImg1,
                img2=batchImg2,
                flow=batchFlow
            )) 
            visualization.plot(batchImg1, batchImg2, batchFlow, batchPred, model)

        # batchEpe.append(sess.run(framework.epe, {
        #     'img1:0': batchImg1,
        #     'img2:0': batchImg2,
        #     'flow:0': batchFlow,
        #     'gamma:0': batchGamma,
        #     'cropX:0': batchCropX,
        #     'cropY:0': batchCropY,
        #     'brightness:0': batchBrightness,
        #     'contrast:0': batchContrast
        # }))

    return float(np.mean(batchEpe))
Пример #11
0
def testing(csv):
    # establish series variable to be used throughout
    series = viz.csv_to_ts(csv)

    print("\n----data frame head----")
    print(series.head())
    print("\n----data frame column types----")
    print(series.dtypes)
    print("\n----plot----")
    viz.plot(series)
    print("\n----histogram----")
    viz.histogram(series)
    print("\n----5 number summary----")
    viz.summary(series)
    print("\n----box plot----")
    viz.box_plot(series)
    print("\n----Shapiro-Wilk Normality test----")
    sw_stats = viz.shapiro_wilk(series)
    print("\n----d'agostino Normality test----")
    ag_stats = viz.d_agostino(series)
    print("\n----Quantile-Quantile Plot----")
    viz.qq_plot(series)
    print("\n----Anderson Darling Normality test----")
    ad_stats = viz.anderson_darling(series)
    print("\n----Mean Squared Error----")
    actual = [0.0, 0.5, 0.0, 0.5, 0.0]
    forecast = [0.2, 0.4, 0.1, 0.6, 0.2]
    mse_stats = viz.MSE(actual, forecast)
    print("\n----Root Mean Square Error----")
    actual = [0.0, 0.5, 0.0, 0.5, 0.0]
    forecast = [0.2, 0.4, 0.1, 0.6, 0.2]
    rmse_stats = viz.RMSE(actual, forecast)
    print("\n----Mean Absolute Percentage Error----")
    actual = [12, 13, 14, 15, 15,22, 27]
    forecast = [11, 13, 14, 14, 15, 16, 18]
    mape_stats = viz.MAPE(actual, forecast)
    print("\n----Symmetrical Mean Absolute Percentage Error----")
    actual = np.array([12, 13, 14, 15, 15,22, 27])
    forecast = np.array([11, 13, 14, 14, 15, 16, 18])
    smape_stats = viz.sMAPE(actual, forecast)
Пример #12
0
def viewForm():

    st.plotly_chart(plot())

    title = st.text_input("Report Title")
    desc = st.text_area('Report Description')
    btn = st.button("Submit")

    if btn:
        report1 = Report(title=title, desc=desc, data="")
        sess.add(report1)
        sess.commit()
        st.success('Report Saved')
Пример #13
0
        area_tuples = zip(components, areas)

        components = sorted(area_tuples, key=itemgetter(1), reverse=True)
        components = components[:10]
        components = [c[0].mesh for c in components]
        mesh = pm.merge_meshes(components)
        return Topex(mesh)

    def scatter(self, light_direction, viewer_direction):
        return self.facet_model.scatter(light_direction, viewer_direction)

    def total_scatter(self, viewer_direction):
        return self.facet_model.total_scatter(viewer_direction)


if __name__ == "__main__":
    #topex_dir = Path('/home/drew/dev/photometry/data/models/topex-poseidon/obj/')
    topex_dir = Path('/home/drew/dev/photometry/photometry/')
    #topex_file_path = topex_dir / "Topex-Posidon-composite.obj"
    topex_file_path = topex_dir / "cube.obj"
    topex = Topex.from_path(topex_file_path)

    #topex = topex.reduced()

    #light_direction = SpherePoint.from_list([1,1,1])
    def func(viewer_direction):
        return topex.total_scatter(viewer_direction)

    plot(func)
Пример #14
0
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
'''

from pathlib import Path
import os
from os.path import basename, splitext

import sys
from models import WavefrontModel
from visualization import plot_function_triangles as plot

if __name__ == "__main__":

    path = sys.argv[1]
    objname = splitext(basename(path))[0]

    model = WavefrontModel.from_path(path)

    def func(viewer_direction):
        return model.total_scatter(viewer_direction)

    filename = objname + ".html"
    plot(func, filename)
Пример #15
0
import numpy as np
import visualization as v


def gaussian(x, mu, sigma):
    """ Implementation of Gaussian function
    """
    norm = 1 / np.sqrt(2 * np.pi) * sigma

    return norm * np.exp(-0.5 * ((x - mu) / sigma)**2)


x = np.linspace(-10, 10, 100)
v.plot(x, gaussian(x, 0, 2))
def main(config_path: str):
    config = Config.get(input_conf=load_json_file(file_path=config_path))
    paths_evaluation_results = evaluate(config=config)
    plot(config=config, score_paths=paths_evaluation_results)
Пример #17
0
def basic_f(y, v0):
    """ The equation for the trajectory of a ball can be solved to find the time it takes the ball to reach a certain height
        How long does it take for the ball to reach 0.2m with an initial velocity of 5m per se?
    """
    sqrt_term = np.sqrt((v0**2 - 2 * g * y))
    return (v0 - sqrt_term, v0 + sqrt_term)


print(
    f"At t={basic_f(0.2, 5.0)[0]} s and {basic_f(0.2, 5.0)[1]} s, the height is 0.2 m"
)


def f(x, theta, v0, y):
    """ A ball is either kicked or thrown with a certain velocity at a certain angle. Calculate the height when it is 5m
        from it's original position
    """
    const = 1 / (v0 * 2)

    return x * np.tan(theta) - const * (g * x**2 /
                                        (np.cos(theta) * np.cos(theta))) + y


print(
    f"The height of the ball at 0.1 metres from the starting position is {round(f(0.1, 60 * (np.pi/180), 15, 1), 2)} m"
)

#x = np.linspace(-np.pi / 2 + 0.1, np.pi / 2 - 0.1, 20)
x = np.linspace(0, 2, 10)
visualization.plot(x, f(x, 60 * (np.pi / 180), 15, 1), False)