Пример #1
0
 def Show(self):
   if not self.proto.hyperparams.enable_display:
     return
   if self.node1.is_input:
     if self.conv:
       visualize.display_convw(self.params['weight'].asarray(),
                               self.proto.receptive_field_width,
                               self.proto.display_rows,
                               self.proto.display_cols, self.conv_filter_fig,
                               title=self.name)
       visualize.display_hidden(self.params['weight'].asarray(),
                                self.fig,
                                title=self.name)
     else:
       if len(self.node1.proto.shape) < 3:
         visualize.display_wsorted(self.params['weight'].asarray(),
                                   self.proto.receptive_field_width,
                                   self.proto.display_rows,
                                   self.proto.display_cols, self.fig,
                                   title=self.name)
       else:
         visualize.display_convw(self.params['weight'].asarray().T,
                                 self.proto.receptive_field_width,
                                 self.proto.display_rows,
                                 self.proto.display_cols, self.fig,
                                 title=self.name)
Пример #2
0
    def Show(self, train=False):
        """Displays useful statistics about the model."""
        if not self.proto.hyperparams.enable_display:
            return
        """
    if self.is_input and hasattr(self, 'neg_state'):
      visualize.display_w(self.neg_state.asarray(), self.proto.shape[0],
                          10, self.batchsize/10, self.fig, title='neg particles')
    elif self.is_input:
      if len(self.proto.shape) == 3:
        edge = self.outgoing_edge[0]
        visualize.display_convw(self.state.asarray().T,
                                self.proto.shape[0],
                                16, self.batchsize/16, self.fig,
                                title=self.name)

      else:
        visualize.display_w(self.state.asarray(), self.proto.shape[0],
                            10, self.batchsize/10, self.fig, title='data')
    else:
    """
        f = 1
        if self.hyperparams.dropout and not train:
            f = 1 / (1 - self.hyperparams.dropout_prob)
        if self.is_input:
            visualize.display_hidden(self.data.asarray(), self.fig, title=self.name)
        else:
            visualize.display_hidden(f * self.state.asarray(), self.fig, title=self.name)
Пример #3
0
 def Show(self, train=False):
   """Displays useful statistics about the model."""
   if not self.proto.hyperparams.enable_display:
     return
   f = 1
   if self.hyperparams.dropout and not train:
     f = 1 / (1 - self.hyperparams.dropout_prob)
   if self.is_input:
     visualize.display_hidden(self.data.asarray(), self.fig, title=self.name)
   else:
     visualize.display_hidden(f*self.state.asarray(), self.fig, title=self.name)
Пример #4
0
  def Show(self):
    if not self.proto.hyperparams.enable_display:
      return
    """
    if self.is_input and hasattr(self, 'neg_state'):
      visualize.display_w(self.neg_state.asarray(), self.proto.shape[0],
                          10, self.batchsize/10, self.fig, title='neg particles')
    elif self.is_input:
      if len(self.proto.shape) == 3:
        edge = self.outgoing_edge[0]
        visualize.display_convw(self.state.asarray().T,
                                self.proto.shape[0],
                                16, self.batchsize/16, self.fig,
                                title=self.name)

      else:
        visualize.display_w(self.state.asarray(), self.proto.shape[0],
                            10, self.batchsize/10, self.fig, title='data')
    else:
    """
    if self.is_input:
      visualize.display_hidden(self.data.asarray(), self.fig, title=self.name)
    else:
      visualize.display_hidden(self.pos_state.asarray(), 2*self.fig, title=self.name + "_positive")
      visualize.display_hidden(self.neg_state.asarray(), 2*self.fig_neg, title=self.name + "_negative")
      #visualize.display_hidden(self.params['bias'].asarray(), 2*self.fig_neg, title=self.name + "_bias")
      visualize.display_w(self.pos_state.asarray(), self.proto.shape[0],
                          self.batchsize, 1, 2*self.fig+1,
                          title=self.name + "_positive", vmin=0, vmax=1)
      visualize.display_w(self.neg_sample.asarray(), self.proto.shape[0],
                          self.batchsize, 1, 2*self.fig_neg+1,
                          title=self.name + "_negative", vmin=0, vmax=1)
      """
Пример #5
0
    def Show(self):
        if not self.proto.hyperparams.enable_display:
            return
        """
    if self.is_input and hasattr(self, 'neg_state'):
      visualize.display_w(self.neg_state.asarray(), self.proto.shape[0],
                          10, self.batchsize/10, self.fig, title='neg particles')
    elif self.is_input:
      if len(self.proto.shape) == 3:
        edge = self.outgoing_edge[0]
        visualize.display_convw(self.state.asarray().T,
                                self.proto.shape[0],
                                16, self.batchsize/16, self.fig,
                                title=self.name)

      else:
        visualize.display_w(self.state.asarray(), self.proto.shape[0],
                            10, self.batchsize/10, self.fig, title='data')
    else:
    """
        if self.is_input:
            visualize.display_hidden(self.data.asarray(),
                                     self.fig,
                                     title=self.name)
        else:
            visualize.display_hidden(self.pos_state.asarray(),
                                     2 * self.fig,
                                     title=self.name + "_positive")
            visualize.display_hidden(self.neg_state.asarray(),
                                     2 * self.fig_neg,
                                     title=self.name + "_negative")
            #visualize.display_hidden(self.params['bias'].asarray(), 2*self.fig_neg, title=self.name + "_bias")
            visualize.display_w(self.pos_state.asarray(),
                                self.proto.shape[0],
                                self.batchsize,
                                1,
                                2 * self.fig + 1,
                                title=self.name + "_positive",
                                vmin=0,
                                vmax=1)
            visualize.display_w(self.neg_sample.asarray(),
                                self.proto.shape[0],
                                self.batchsize,
                                1,
                                2 * self.fig_neg + 1,
                                title=self.name + "_negative",
                                vmin=0,
                                vmax=1)
            """