Пример #1
0
 def drawFieldLines(video_path):
     print(f'showing {video_path}')
     video = getArrayFromVideo(video_path)
     frame = video[0]
     field_lines = findFieldLines(frame)
     for fl in field_lines:
         print(fl.getCoordinates(), f'slope: {fl.getSlope()}')
         fl.draw(frame)
     visualize.show_image(frame)
Пример #2
0
def findHashes(img, line1, line2):
    greens = img[:, :, 1]
    high_greens = np.zeros(greens.shape)
    high_greens[np.where(greens > 200)] = 1
    green_channel[np.nonzero(high_greens)] = [255, 255, 255]
    green_channel[np.where(high_greens == 0)] = [0, 0, 0]
    visualize.show_image(green_channel)
    # get search zone array
    # get 4 lines parallel with field lines equidastly spaced
    # get values with green is over threshold (or similar values as lines?)
    # get intercection of lines and high greens
    # if a perfect 8 hashes are found, were done. otherwise, need to try next lines
    # find edges of the hashes
    # all information needed for a field model has been found
    return
Пример #3
0
def doSomething(img, field_lines):
    width, height = img.shape[1], img.shape[0]
    no_greens = img.copy()
    no_greens[:, :, 1] = 0
    avg_rb = np.mean(no_greens, axis=2)
    # darks = np.where(avg_rb < 100, 1, 0)
    darks = np.where(avg_rb > 100, 1, 0)
    # wi = np.zeros(img_arr.shape)
    # wi[np.nonzero(whites)] = [255,255,255]
    # whites = np.zeros(img.shape)#np.zeros(img.shape)
    # whites.fill(255)
    whites = img.copy()
    whites[np.nonzero(darks)] = [255, 0, 0]
    removeFieldLines(whites, field_lines)
    whites = np.array(whites, np.int32)

    res = tes.image_to_string(Image.fromarray((whites * 255).astype(np.uint8)),
                              config='digits')
    print(res)
    visualize.show_image(whites)
Пример #4
0

def getFileExt(path):
    file = os.path.basename(path)
    return os.path.splitext(file)[1]


def getFrameRate(video):
    vid_cap = cv2.VideoCapture(video)
    return vid_cap.get(cv2.CAP_PROP_FPS)


def removeBlackFrames(video):
    frame0 = video[0]
    return


def getArrayFromVideo(file):
    return skvideo.io.vread(file)


# def dir_map(dir, func):
#     for scene in os.path.listdir(scene_dir):
#         scene_path = os.path.join(scene_dir, scene)
if __name__ == '__main__':
    video = 'scenes/2019w3_nyj-ne/scene_0.mov'
    arr = getArrayFromVideo(video)
    for i in range(0, len(arr), 20):
        visualize.show_image(arr[i])
        input()
Пример #5
0
def searchForHashMarks(green_channel, field_lines, img):
    print('searching for hash marks')
    height, width = green_channel.shape[0], green_channel.shape[1]
    search_indecies = np.zeros((height, width))

    markers = []
    # def get_point(): return
    for fl in field_lines:
        p0, p1 = fl
        line_length = getDistance(p0, p1)
        ld = 0.3 * line_length
        slope = getLineSlope(p0, p1)
        dx, dy = getdxdy(ld, slope)
        top, bottom = getTopBottom(p0, p1)
        TEMP_VANTAGE = 0.5  # get actual constant after i make field modeling stuff. Oh shit it actually might be .5 if height is field_heght
        sign_top = -1 if slope > 0 else 1
        sign_bottom = -1 if slope < 0 else 1
        search_tx, search_ty = int(top[0] + sign_top * dx), int(top[1] +
                                                                sign_top * dy)
        search_bx, search_by = int(bottom[0] + sign_bottom * TEMP_VANTAGE *
                                   dx), int(bottom[1] +
                                            sign_bottom * TEMP_VANTAGE * dy)
        search_range_top = (search_tx, search_ty)
        search_range_bottom = (search_bx, search_by)

        marker = [search_range_top, search_range_bottom]
        markers.append(marker)
    print('have search zones')
    search_boxes = []
    for i in range(len(markers) - 1):
        m0, m1 = markers[i], markers[i + 1]
        frame = Image.new('L', (width, height), 0)
        box_points = [m0[0], m1[0], m1[1], m0[1]]
        ImageDraw.Draw(frame).polygon(box_points, outline=1, fill=1)
        box = np.array(frame)
        search_boxes.append(box)
    # print('getting gradient')
    # gradient = np.gradient(greens)
    # x_gradient, y_gradient = gradient[0], gradient[1]
    # inflection_points = np.where(abs(x_gradient) > .2, 1, 0)
    # for i in range(potential_inflections[0].shape[0]):
    #     print(potential_inflections[1][i], potential_inflections[0][i])
    # img_to_show = np.zeros(green_channel.shape)
    # green_channel[np.nonzero(inflection_points)] = [0,0,0]
    # visualize.show_image(green_channel)

    # print(x_gradient)
    # print(x_gradient.shape, y_gradient.shape, 1, 1)
    # print('gradient found')
    # green_channel = np.zeros(green_channel.shape)
    # for box in search_boxes:
    #     for r in range(height):
    #         for c in range(width):
    #             gx,gy = y_gradient[r,c], x_gradient[r,c]
    #             avg_green_change = (gx+gy)/2
    #             green_channel[r,c,0] = gx
    #             # green_channel[r,c,2] = gy
    greens = green_channel[:, :, 1]
    high_greens = np.zeros(greens.shape)
    high_greens[np.where(greens > 200)] = 1
    green_channel[np.nonzero(high_greens)] = [255, 255, 255]
    green_channel[np.where(high_greens == 0)] = [0, 0, 0]
    visualize.show_image(green_channel)
Пример #6
0
def findHotspots(fl1,
                 fl2,
                 bright_vals,
                 image,
                 search_jump=10,
                 max_search_distance=500):
    NUM_HASH_MARKS = 4
    distance_searched = 0
    p1, p2 = fl1.getBottomPoint(), fl2.getBottomPoint()

    fl1_slope, fl2_slope = fl1.getSlope(), fl2.getSlope()
    p1_dx, p1_dy = line.getdxdy(search_jump, fl1_slope)
    p2_dx, p2_dy = line.getdxdy(search_jump, fl2_slope)

    direction1 = 1 if p1_dy > 0 else -1
    direction2 = 1 if p2_dy > 0 else -1
    p1_dx, p1_dy = direction1 * p1_dx, direction1 * p1_dy
    p2_dx, p2_dy = direction2 * p2_dx, direction2 * p2_dy

    height, width = bright_vals.shape

    pointIsOnscreen = lambda p: (p[0] >= 0 and p[0] < width and p[1] >= 0 and
                                 p[1] < height)

    # cv.line(image, (int(p1[0]),int(p1[1])), (int(p2[0]),int(p2[1])), [0,0,255], 2)
    # visualize.show_image(image)

    while distance_searched < max_search_distance:
        print(f'search points: {p1}, {p2}')
        search_line = p1[0], p1[1], p2[0], p2[1]
        hotspots = line.getEquidistantPoints(search_line, NUM_HASH_MARKS)
        spots = list(map(lambda hs: (int(hs[0]), int(hs[1])), hotspots))

        hotspots_are_hashmarks = True
        num_bright = 0
        for point in hotspots:
            # if not pointIsOnscreen(point): # TODO when i fix things this should be gone
            #     hotspots_are_hashmarks = False
            #     break

            x, y = point
            r, c = int(y), int(x)
            point_is_bright = True if bright_vals[r, c] == 1 else False
            if not point_is_bright:
                hotspots_are_hashmarks = False
                # break
            else:
                num_bright += 1

        print(f'num bright: {num_bright}')
        if num_bright > 2:
            hm = HashMarks(spots)
            hm.draw(image)
            visualize.show_image(image)

        if hotspots_are_hashmarks:
            print("WHATS IT REALLY GOOD SON")
            return True, hotspots
        else:
            distance_searched += search_jump
            p1x = p1[0] + p1_dx
            p1y = p1[1] + p1_dy
            p2x = p2[0] + p2_dx
            p2y = p2[1] + p2_dy
            p1, p2 = (p1x, p1y), (p2x, p2y)

    return False, []
Пример #7
0
    #     for r in range(height):
    #         for c in range(width):
    #             gx,gy = y_gradient[r,c], x_gradient[r,c]
    #             avg_green_change = (gx+gy)/2
    #             green_channel[r,c,0] = gx
    #             # green_channel[r,c,2] = gy
    greens = green_channel[:, :, 1]
    high_greens = np.zeros(greens.shape)
    high_greens[np.where(greens > 200)] = 1
    green_channel[np.nonzero(high_greens)] = [255, 255, 255]
    green_channel[np.where(high_greens == 0)] = [0, 0, 0]
    visualize.show_image(green_channel)

    # green_channel[np.where(gradient==0)] = [255, 0, 0]


if __name__ == '__main__':
    scene_dir = 'scenes/overhead'
    videos = file_utils.getPaths(scene_dir)
    first_video = videos[0]
    manager = VideoManager(first_video)
    first_frame = manager.getFrame(0)
    field_lines = findFieldLines(first_frame)

    for fl in field_lines:
        fl.draw(first_frame)

    hashmarks = findHashMarks(first_frame, field_lines)
    hashmarks.draw(first_frame)
    visualize.show_image(first_frame)