Пример #1
0
def test_interpolated_tables(base_config):
    year_start = base_config.time.start.year
    year_end = base_config.time.end.year
    years = build_table(lambda age, sex, year: year, year_start, year_end)
    ages = build_table(lambda age, sex, year: age, year_start, year_end)
    one_d_age = ages.copy()
    del one_d_age['year']
    one_d_age = one_d_age.drop_duplicates()
    base_config.population.update({'population_size': 10000})

    simulation = setup_simulation([TestPopulation()], input_config=base_config)
    manager = simulation.tables
    years = manager.build_table(years,
                                key_columns=('sex', ),
                                parameter_columns=(
                                    'age',
                                    'year',
                                ))
    ages = manager.build_table(ages,
                               key_columns=('sex', ),
                               parameter_columns=(
                                   'age',
                                   'year',
                               ))
    one_d_age = manager.build_table(one_d_age,
                                    key_columns=('sex', ),
                                    parameter_columns=('age', ))

    result_years = years(simulation.population.population.index)
    result_ages = ages(simulation.population.population.index)
    result_ages_1d = one_d_age(simulation.population.population.index)

    fractional_year = simulation.clock.time.year
    fractional_year += simulation.clock.time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)
    assert np.allclose(result_ages, simulation.population.population.age)
    assert np.allclose(result_ages_1d, simulation.population.population.age)

    simulation.clock._time += pd.Timedelta(30.5 * 125, unit='D')
    simulation.population._population.age += 125 / 12

    result_years = years(simulation.population.population.index)
    result_ages = ages(simulation.population.population.index)
    result_ages_1d = one_d_age(simulation.population.population.index)

    fractional_year = simulation.clock.time.year
    fractional_year += simulation.clock.time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)
    assert np.allclose(result_ages, simulation.population.population.age)
    assert np.allclose(result_ages_1d, simulation.population.population.age)
Пример #2
0
def test_interpolated_tables_without_uninterpolated_columns(base_config):
    year_start = base_config.time.start.year
    year_end = base_config.time.end.year
    years = build_table(lambda age, sex, year: year, year_start, year_end)
    del years['sex']
    years = years.drop_duplicates()
    base_config.population.update({'population_size': 10000})

    simulation = setup_simulation([TestPopulation()], input_config=base_config)
    manager = simulation.tables
    years = manager.build_table(years,
                                key_columns=(),
                                parameter_columns=(
                                    'year',
                                    'age',
                                ))

    result_years = years(simulation.population.population.index)

    fractional_year = simulation.clock.time.year
    fractional_year += simulation.clock.time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)

    simulation.clock._time += pd.Timedelta(30.5 * 125, unit='D')

    result_years = years(simulation.population.population.index)

    fractional_year = simulation.clock.time.year
    fractional_year += simulation.clock.time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)
Пример #3
0
def test_interpolated_tables__exact_values_at_input_points():
    years = build_table(lambda age, sex, year: year)
    input_years = years.year.unique()

    simulation = setup_simulation([generate_test_population], 10000)
    manager = simulation.tables
    years = manager.build_table(years)

    for year in input_years:
        simulation.current_time = datetime(year=year, month=1, day=1)
        assert np.allclose(years(simulation.population.population.index),
                           simulation.current_time.year + 1/365, rtol=1.e-5)
Пример #4
0
def test_interpolated_tables():
    years = build_table(lambda age, sex, year: year)
    ages = build_table(lambda age, sex, year: age)
    one_d_age = ages.copy()
    del one_d_age['year']
    one_d_age = one_d_age.drop_duplicates()

    simulation = setup_simulation([generate_test_population], 10000)
    manager = simulation.tables
    years = manager.build_table(years)
    ages = manager.build_table(ages)
    one_d_age = manager.build_table(one_d_age, parameter_columns=('age',))

    result_years = years(simulation.population.population.index)
    result_ages = ages(simulation.population.population.index)
    result_ages_1d = one_d_age(simulation.population.population.index)

    fractional_year = simulation.current_time.year
    fractional_year += simulation.current_time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)
    assert np.allclose(result_ages, simulation.population.population.age)
    assert np.allclose(result_ages_1d, simulation.population.population.age)

    simulation.current_time += timedelta(days=30.5 * 125)
    simulation.population._population.age += 125/12

    result_years = years(simulation.population.population.index)
    result_ages = ages(simulation.population.population.index)
    result_ages_1d = one_d_age(simulation.population.population.index)

    fractional_year = simulation.current_time.year
    fractional_year += simulation.current_time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)
    assert np.allclose(result_ages, simulation.population.population.age)
    assert np.allclose(result_ages_1d, simulation.population.population.age)
Пример #5
0
def test_interpolated_tables__exact_values_at_input_points(base_config):
    year_start = base_config.time.start.year
    year_end = base_config.time.end.year
    years = build_table(lambda age, sex, year: year, year_start, year_end)
    input_years = years.year.unique()
    base_config.population.update({'population_size': 10000})

    simulation = setup_simulation([TestPopulation()], input_config=base_config)
    manager = simulation.tables
    years = manager.build_table(years,
                                key_columns=('sex', ),
                                parameter_columns=(
                                    'age',
                                    'year',
                                ))

    for year in input_years:
        simulation.clock._time = pd.Timestamp(year, 1, 1)
        assert np.allclose(years(simulation.population.population.index),
                           simulation.clock.time.year + 1 / 365)
Пример #6
0
def test_interpolated_tables_without_uniterpolated_columns():
    years = build_table(lambda age, sex, year: year)
    del years['sex']
    years = years.drop_duplicates()

    simulation = setup_simulation([generate_test_population], 10000)
    manager = simulation.tables
    years = manager.build_table(years, key_columns=(), parameter_columns=('year', 'age',))

    result_years = years(simulation.population.population.index)

    fractional_year = simulation.current_time.year
    fractional_year += simulation.current_time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)

    simulation.current_time += timedelta(days=30.5 * 125)

    result_years = years(simulation.population.population.index)

    fractional_year = simulation.current_time.year
    fractional_year += simulation.current_time.timetuple().tm_yday / 365.25

    assert np.allclose(result_years, fractional_year)