res2 = first_layer_predictor2.fit_transform( global_f_select.fit_transform(data, stimuli), stimuli) # Now visualise the predictions. from viz import get_bars, draw_words, pad, make_collage bars = get_bars(img_size=(50, 50)) words1 = draw_words(res1, bars) words2 = draw_words(res2, bars) words = draw_words(stimuli, bars) stacked = np.concatenate([words1, words2, words], axis=1) # pad this slightly in order to be able to distinguish groups stacked = pad(stacked, [0, 10, 10]) num_x = 8 num_y = 12 start_at = 0 collage = make_collage(stacked[start_at:start_at + (num_x * num_y)].\ reshape(num_x, num_y, stacked.shape[1], stacked.shape[2])) import pylab as pl pl.figure() pl.imshow(collage) pl.gray() pl.show()
bars = get_bars(img_size=(50, 50)) words1 = draw_words(res1, bars) words2 = draw_words(res2, bars) words = draw_words(stimuli, bars) stacked = np.concatenate([words1, words2, words], axis=1) # pad this slightly in order to be able to distinguish groups stacked = pad(stacked, [0, 10, 10]) num_x = 8 num_y = 12 start_at = 0 collage = make_collage(stacked[start_at:start_at + (num_x * num_y)].\ reshape(num_x, num_y, stacked.shape[1], stacked.shape[2])) import pylab as pl pl.figure() pl.imshow(collage) pl.gray() import scoring pl.figure() roc1 = scoring.roc(res1, stimuli) roc2 = scoring.roc(res2, stimuli) pl.plot(roc1) pl.plot(roc2) pl.plot([0, len(stimuli)], [0, 1])