def exec_command(task_id, command, context, processor): """The function executes a given task using a package task processor. Returns a pair of task identifier and execution result. Parameters ---------- task_id: string Unique task identifier command : vizier.viztrail.command.ModuleCommand Specification of the command that is to be executed context: vizier.engine.task.base.TaskContext Context for the executed task processor: vizier.engine.task.processor.TaskProcessor Task processor to execute the given command Returns ------- (string, vizier.engine.task.processor.ExecResult) """ try: result = processor.compute( command_id=command.command_id, arguments=command.arguments, context=context ) except Exception as ex: outputs = ModuleOutputs().error(ex) result = ExecResult(is_success=False, outputs=outputs) return task_id, result
def execute_script(self, args, context): """Execute a R script in the given context. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get R script from user arguments source = args.get_value(cmd.PARA_R_SOURCE) # Redirect standard output and standard error streams out = sys.stdout err = sys.stderr stream = list() sys.stdout = OutputStream(tag='out', stream=stream) sys.stderr = OutputStream(tag='err', stream=stream) outputs = ModuleOutputs() mimir_table_names = dict() for ds_name_o in context.datasets: dataset_id = context.datasets[ds_name_o] dataset = context.datastore.get_dataset(dataset_id) if dataset is None: raise ValueError('unknown dataset \'' + ds_name_o + '\'') mimir_table_names[ds_name_o] = dataset.identifier # Run the r code try: evalresp = mimir.evalR(mimir_table_names, source) ostd = evalresp['stdout'] oerr = evalresp['stderr'] if not ostd == '': outputs.stdout.append(HtmlOutput(ostd)) if not oerr == '': outputs.stderr.append(TextOutput(oerr)) except Exception as ex: outputs.error(ex) finally: # Make sure to reverse redirection of output streams sys.stdout = out sys.stderr = err # Set module outputs for tag, text in stream: text = ''.join(text).strip() if tag == 'out': outputs.stdout.append(HtmlOutput(text)) else: outputs.stderr.append(TextOutput(text)) provenance = ModuleProvenance() # Return execution result return ExecResult( is_success=(len(outputs.stderr) == 0), outputs=outputs, provenance=provenance )
def compute_drop_dataset(self, args, context): """Execute drop dataset command. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get dataset name and remove the associated entry from the # dictionary of datasets in the context. Will raise exception if the # specified dataset does not exist. ds_name = args.get_value(pckg.PARA_DATASET).lower() ds = context.get_dataset(ds_name) datasets = dict(context.datasets) del datasets[ds_name] return ExecResult(outputs=ModuleOutputs( stdout=[TextOutput('Dataset \'' + ds_name + '\' deleted')]), provenance=ModuleProvenance(read=dict(), write=dict(), delete=[ds_name]))
def set_success(self, task_id: str, finished_at: datetime = get_current_time(), result: ExecResult = ExecResult()): self.task_id = task_id self.outputs = result.outputs self.state = 'SUCCESS'
def execute(task_id, project_id, command_doc, context, resources): """Execute the givven command. Parameters: ----------- task_id: string Unique task identifier project_id: string Unique project identifier command_doc : dict Dictionary serialization of the module command context: dict Dictionary of available resources in the database state. The key is the resource name. Values are resource identifiers. resources: dict Optional information about resources that were generated during a previous execution of the command """ # Create a remote workflow controller for the given task controller = worker_env.get_controller(project_id) # Notify the workflow controller that the task started to run controller.set_running(task_id=task_id, started_at=get_current_time()) # Get the processor and execute the command. In case of an unknown package # the result is set to error. command = ModuleCommand.from_dict(command_doc) if command.package_id in worker_env.processors: processor = worker_env.processors[command.package_id] _, exec_result = exec_command( task_id=task_id, command=command, context=TaskContext( project_id=project_id, datastore=worker_env.datastores.get_datastore(project_id), filestore=worker_env.filestores.get_filestore(project_id), datasets=context[labels.CONTEXT_DATASETS], resources=resources, dataobjects=context[labels.CONTEXT_DATAOBJECTS] ), processor=processor ) else: message = 'unknown package \'' + str(command.package_id) + '\'' exec_result = ExecResult( is_success=False, outputs=ModuleOutputs(stderr=[TextOutput(message)]) ) # Notify the workflow controller that the task has finished if exec_result.is_success: controller.set_success( task_id=task_id, outputs=exec_result.outputs, provenance=exec_result.provenance ) else: controller.set_error( task_id=task_id, outputs=exec_result.outputs )
def compute_simple_chart(self, args, context): """Execute simple chart command. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get dataset name and the associated dataset. This will raise an # exception if the dataset name is unknown. ds_name = args.get_value(pckg.PARA_DATASET) ds = context.get_dataset(ds_name) # Get user-provided name for the new chart and verify that it is a # valid name chart_name = args.get_value(pckg.PARA_NAME, default_value=ds_name + ' Plot') if chart_name == '' or chart_name == None: chart_name = ds_name + ' Plot' if not is_valid_name(chart_name): raise ValueError('invalid chart name \'' + str(chart_name) + '\'') chart_args = args.get_value(cmd.PARA_CHART) chart_type = chart_args.get_value(cmd.PARA_CHART_TYPE) grouped_chart = chart_args.get_value(cmd.PARA_CHART_GROUPED) # Create a new chart view handle and add the series definitions view = ChartViewHandle(dataset_name=ds_name, chart_name=chart_name, chart_type=chart_type, grouped_chart=grouped_chart) # The data series index for x-axis values is optional if args.has(cmd.PARA_XAXIS): x_axis = args.get_value(cmd.PARA_XAXIS) # X-Axis column may be empty. In that case, we ignore the # x-axis spec add_data_series(args=x_axis, view=view, dataset=ds, col_arg_id=cmd.PARA_XAXIS_COLUMN, range_arg_id=cmd.PARA_XAXIS_RANGE) view.x_axis = 0 # Definition of data series. Each series is a pair of column # identifier and a printable label. for data_series in args.get_value(cmd.PARA_SERIES): add_data_series(args=data_series, view=view, dataset=ds) # Execute the query and get the result rows = ChartQuery.exec_query(ds, view) # Add chart view handle as module output return ExecResult( outputs=ModuleOutputs(stdout=[ChartOutput(view=view, rows=rows)]), provenance=ModuleProvenance(read={ds_name: ds.identifier}, write=dict(), charts=[view]))
def compute_empty_dataset(self, args, context): """Execute empty dataset command. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ outputs = ModuleOutputs() default_columns = [("''", "unnamed_column")] ds_name = args.get_value(pckg.PARA_NAME).lower() if ds_name in context.datasets: raise ValueError('dataset \'' + ds_name + '\' exists') if not is_valid_name(ds_name): raise ValueError('invalid dataset name \'' + ds_name + '\'') try: source = "SELECT {};".format(", ".join( default_val + " AS " + col_name for default_val, col_name in default_columns)) view_name, dependencies = mimir.createView(dict(), source) columns = [ MimirDatasetColumn(identifier=col_id, name_in_dataset=col_defn[1]) for col_defn, col_id in zip(default_columns, range(len(default_columns))) ] ds = context.datastore.register_dataset(table_name=view_name, columns=columns, row_counter=1) provenance = ModuleProvenance( write={ ds_name: DatasetDescriptor(identifier=ds.identifier, columns=ds.columns, row_count=ds.row_count) }, read=dict( ) # Need to explicitly declare a lack of dependencies. ) outputs.stdout.append( TextOutput("Empty dataset '{}' created".format(ds_name))) except Exception as ex: provenance = ModuleProvenance() outputs.error(ex) return ExecResult(is_success=(len(outputs.stderr) == 0), outputs=outputs, provenance=provenance)
def execute_script(self, args, context): """Execute a Markdown script in the given context. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get Markdown script from user arguments source = args.get_value(cmd.PARA_MARKDOWN_SOURCE) # Redirect standard output and standard error streams out = sys.stdout err = sys.stderr stream = list() sys.stdout = OutputStream(tag='out', stream=stream) sys.stderr = OutputStream(tag='err', stream=stream) outputs = ModuleOutputs() # Run the markdown code try: #we should validate the markdown here ostd = source oerr = '' if not ostd == '': outputs.stdout.append(MarkdownOutput(ostd)) if not oerr == '': outputs.stderr.append(TextOutput(oerr)) except Exception as ex: outputs.error(ex) finally: # Make sure to reverse redirection of output streams sys.stdout = out sys.stderr = err # Set module outputs for tag, text in stream: text = ''.join(text).strip() if tag == 'out': outputs.stdout.append(MarkdownOutput(text)) else: outputs.stderr.append(TextOutput(text)) provenance = ModuleProvenance() # Return execution result return ExecResult(is_success=(len(outputs.stderr) == 0), outputs=outputs, provenance=provenance)
def create_exec_result(self, dataset_name, input_dataset=None, output_dataset=None, database_state=None, stdout=None, resources=None): """Create execution result object for a successfully completed task. Assumes that a single datasets has been modified. Note that this method is not suitable to generate the result object for the drop dataset and rename dataset commands. Parameters ---------- dataset_name: string Name of the manipulated dataset input_dataset: vizier.datastore.dataset.DatasetDescriptor Descriptor for the input dataset output_dataset: vizier.datastore.dataset.DatasetDescriptor, optional Descriptor for the resulting dataset database_state: dict, optional Identifier for datasets in the database state agains which a task was executed (keyed by user-provided name) stdout= list(string), optional Lines in the command output resources: dict, optional Optional resources that were generated by the command Returns ------- vizier.engine.task.processor.ExecResult """ if not output_dataset is None: ds = DatasetDescriptor(identifier=output_dataset.identifier, columns=output_dataset.columns, row_count=output_dataset.row_count) else: ds = None return ExecResult( outputs=ModuleOutputs(stdout=[TextOutput(line) for line in stdout]), provenance=ModuleProvenance( read={dataset_name: input_dataset.identifier} if not input_dataset is None else None, write={dataset_name: ds}, resources=resources))
def compute_rename_dataset(self, args, context): """Execute rename dataset command. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get name of existing dataset and the new dataset name. Raise # exception if a dataset with the new name already exists or if the new # dataset name is not a valid name. ds_name = args.get_value(pckg.PARA_DATASET).lower() new_name = args.get_value(pckg.PARA_NAME).lower() if new_name in context.datasets: raise ValueError('dataset \'' + new_name + '\' exists') if not is_valid_name(new_name): raise ValueError('invalid dataset name \'' + new_name + '\'') # Get dataset. Raises exception if the dataset does not exist. ds = context.get_dataset(ds_name) # Adjust database state datasets = dict(context.datasets) del datasets[ds_name] datasets[new_name] = ds return ExecResult( outputs=ModuleOutputs(stdout=[TextOutput('1 dataset renamed')]), provenance=ModuleProvenance(read=dict(), write={ new_name: DatasetDescriptor( identifier=ds.identifier, columns=ds.columns, row_count=ds.row_count) }, delete=[ds_name]))
def set_success( self, task_id: str, finished_at: datetime = get_current_time(), result: ExecResult = ExecResult() ) -> Optional[bool]: """Set status of the module that is associated with the given task identifier to success. The finished_at property of the timestamp is set to the given value or the current time (if None). If case of a successful module execution the database state and module provenance information are also adjusted together with the module output streams. If the workflow has pending modules the first pending module will be executed next. Returns True if the state of the workflow was changed and False otherwise. The result is None if the project or task did not exist. Parameters ---------- task_id : string Unique task identifier finished_at: datetime.datetime, optional Timestamp when module started running datasets : dict, optional Dictionary of resulting datasets. The user-specified name is the key for the dataset identifier. outputs: vizier.viztrail.module.output.ModuleOutputs, optional Output streams for module provenance: vizier.viztrail.module.provenance.ModuleProvenance, optional Provenance information about datasets that were read and writen by previous execution of the module. Returns ------- bool """ raise NotImplementedError
def execute_query(self, args, context): """Execute a SQL query in the given context. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get SQL source code that is in this cell and the global # variables source = args.get_value(cmd.PARA_SQL_SOURCE) if not source.endswith(';'): source = source + ';' ds_name = args.get_value(cmd.PARA_OUTPUT_DATASET, raise_error=False) # Get mapping of datasets in the context to their respective table # name in the Mimir backend mimir_table_names = dict() for ds_name_o in context.datasets: dataset_id = context.datasets[ds_name_o] dataset = context.datastore.get_dataset(dataset_id) if dataset is None: raise ValueError('unknown dataset \'' + ds_name_o + '\'') mimir_table_names[ds_name_o] = dataset.table_name # Module outputs outputs = ModuleOutputs() try: # Create the view from the SQL source view_name, dependencies = mimir.createView(mimir_table_names, source) sql = 'SELECT * FROM ' + view_name mimirSchema = mimir.getSchema(sql) columns = list() for col in mimirSchema: col_id = len(columns) name_in_dataset = col['name'] col = MimirDatasetColumn(identifier=col_id, name_in_dataset=name_in_dataset) columns.append(col) row_count = mimir.countRows(view_name) provenance = None if ds_name is None or ds_name == '': ds_name = "TEMPORARY_RESULT" ds = context.datastore.register_dataset(table_name=view_name, columns=columns, row_counter=row_count) ds_output = server.api.datasets.get_dataset( project_id=context.project_id, dataset_id=ds.identifier, offset=0, limit=10) ds_output['name'] = ds_name dependencies = dict((dep_name.lower(), context.datasets.get(dep_name.lower(), None)) for dep_name in dependencies) # print("---- SQL DATASETS ----\n{}\n{}".format(context.datasets, dependencies)) outputs.stdout.append(DatasetOutput(ds_output)) provenance = ModuleProvenance(write={ ds_name: DatasetDescriptor(identifier=ds.identifier, columns=ds.columns, row_count=ds.row_count) }, read=dependencies) except Exception as ex: provenance = ModuleProvenance() outputs.error(ex) # Return execution result return ExecResult(is_success=(len(outputs.stderr) == 0), outputs=outputs, provenance=provenance)
def compute_load_dataset(self, args, context): """Execute load dataset command. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get the new dataset name. Raise exception if a dataset with the # specified name already exsists. ds_name = args.get_value(pckg.PARA_NAME).lower() if ds_name in context.datasets: raise ValueError('dataset \'' + ds_name + '\' exists') if not is_valid_name(ds_name): raise ValueError('invalid dataset name \'' + ds_name + '\'') # Get components of the load source. Raise exception if the source # descriptor is invalid. source_desc = args.get_value(cmd.PARA_FILE) file_id = None url = None if pckg.FILE_ID in source_desc and source_desc[ pckg.FILE_ID] is not None: file_id = source_desc[pckg.FILE_ID] elif pckg.FILE_URL in source_desc and source_desc[ pckg.FILE_URL] is not None: url = source_desc[pckg.FILE_URL] else: raise ValueError('invalid source descriptor') username = source_desc[ pckg.FILE_USERNAME] if pckg.FILE_USERNAME in source_desc else None password = source_desc[ pckg.FILE_PASSWORD] if pckg.FILE_PASSWORD in source_desc else None reload = source_desc[ pckg.FILE_RELOAD] if pckg.FILE_RELOAD in source_desc else False load_format = args.get_value(cmd.PARA_LOAD_FORMAT) detect_headers = args.get_value(cmd.PARA_DETECT_HEADERS, raise_error=False, default_value=True) infer_types = args.get_value(cmd.PARA_INFER_TYPES, raise_error=False, default_value=True) options = args.get_value(cmd.PARA_LOAD_OPTIONS, raise_error=False) m_opts = [] print((args.get_value(cmd.PARA_LOAD_DSE, raise_error=False, default_value=False))) if args.get_value(cmd.PARA_LOAD_DSE, raise_error=False, default_value=False): m_opts.append({'name': 'datasourceErrors', 'value': 'true'}) if not options is None: for option in options: load_opt_key = option.get_value(cmd.PARA_LOAD_OPTION_KEY) load_opt_val = option.get_value(cmd.PARA_LOAD_OPTION_VALUE) m_opts.append({'name': load_opt_key, 'value': load_opt_val}) # Execute load command. result = self.api.load_dataset(datastore=context.datastore, filestore=context.filestore, file_id=file_id, url=url, detect_headers=detect_headers, infer_types=infer_types, load_format=load_format, options=m_opts, username=username, password=password, resources=context.resources, reload=reload, human_readable_name=ds_name.upper()) # Delete the uploaded file (of load was from file). A reference to the # created dataset is in the resources and will be used if the module is # re-executed. #if not file_id is None: # context.filestore.delete_file(file_id) ds = DatasetDescriptor(identifier=result.dataset.identifier, columns=result.dataset.columns, row_count=result.dataset.row_count) ds_output = server.api.datasets.get_dataset( project_id=context.project_id, dataset_id=ds.identifier, offset=0, limit=10) ds_output['name'] = ds_name return ExecResult( outputs=ModuleOutputs(stdout=[DatasetOutput(ds_output)]), provenance=ModuleProvenance( read=dict( ), # need to explicitly declare a lack of dependencies write={ds_name: ds}, resources=result.resources))
def execute_script(self, args, context): """Execute a Python script in the given context. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get Python script from user arguments source = args.get_value(cmd.PYTHON_SOURCE) # Initialize the scope variables that are available to the executed # Python script. At this point this includes only the client to access # and manipulate datasets in the undelying datastore client = VizierDBClient( datastore=context.datastore, datasets=context.datasets ) variables = {VARS_DBCLIENT: client} # Redirect standard output and standard error streams out = sys.stdout err = sys.stderr stream = list() sys.stdout = OutputStream(tag='out', stream=stream) sys.stderr = OutputStream(tag='err', stream=stream) # Keep track of exception that is thrown by the code exception = None # Run the Python code try: python_cell_preload(variables) exec(source, variables, variables) except Exception as ex: exception = ex finally: # Make sure to reverse redirection of output streams sys.stdout = out sys.stderr = err # Set module outputs outputs = ModuleOutputs() is_success = (exception is None) for tag, text in stream: text = ''.join(text).strip() if tag == 'out': outputs.stdout.append(HtmlOutput(text)) else: outputs.stderr.append(TextOutput(text)) is_success = False if is_success: # Create provenance information. Ensure that all dictionaries # contain elements of expected types, i.e, ensure that the user did # not attempt anything tricky. read = dict() for name in client.read: if not isinstance(name, str): raise RuntimeError('invalid key for mapping dictionary') if name in context.datasets: read[name] = context.datasets[name] if not isinstance(read[name], str): raise RuntimeError('invalid element in mapping dictionary') else: read[name] = None write = dict() for name in client.write: if not isinstance(name, str): raise RuntimeError('invalid key for mapping dictionary') ds_id = client.datasets[name] if not ds_id is None: if not isinstance(ds_id, str): raise RuntimeError('invalid value in mapping dictionary') elif ds_id in client.descriptors: write[name] = client.descriptors[ds_id] else: write[name] = client.datastore.get_descriptor(ds_id) else: write[name] = None provenance = ModuleProvenance( read=read, write=write, delete=client.delete ) else: outputs.error(exception) provenance = ModuleProvenance() # Return execution result return ExecResult( is_success=is_success, outputs=outputs, provenance=provenance )
def compute(self, command_id, arguments, context): """Compute results for commands in the Mimir package using the set of user-provided arguments and the current database state. Parameters ---------- command_id: string Unique identifier for a command in a package declaration arguments: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ outputs = ModuleOutputs() # Get dataset. Raise exception if dataset is unknown. ds_name = arguments.get_value(pckg.PARA_DATASET).lower() dataset = context.get_dataset(ds_name) mimir_table_name = dataset.identifier # Keep track of the name of the input dataset for the provenance # information. input_ds_name = ds_name if command_id == cmd.MIMIR_GEOCODE: geocoder = arguments.get_value(cmd.PARA_GEOCODER) # Add columns for LATITUDE and LONGITUDE column_counter = dataset.max_column_id() + 1 cname_lat = dataset.get_unique_name('LATITUDE') cname_lon = dataset.get_unique_name('LONGITUDE') dataset.columns.append( MimirDatasetColumn( identifier=column_counter, name_in_dataset=cname_lat, data_type=DATATYPE_REAL ) ) dataset.columns.append( MimirDatasetColumn( identifier=column_counter + 1, name_in_dataset=cname_lon, data_type=DATATYPE_REAL ) ) house = arguments.get_value(cmd.PARA_HOUSE_NUMBER, raise_error=False, default_value=None) street = arguments.get_value(cmd.PARA_STREET, raise_error=False, default_value=None) city = arguments.get_value(cmd.PARA_CITY, raise_error=False, default_value=None) state = arguments.get_value(cmd.PARA_STATE, raise_error=False, default_value=None) params = { 'houseColumn': dataset.column_by_id(house).name_in_rdb if house is not None and house != '' else None, 'streetColumn': dataset.column_by_id(street).name_in_rdb if street is not None and street != '' else None, 'cityColumn': dataset.column_by_id(city).name_in_rdb if city is not None and city != '' else None, 'stateColumn': dataset.column_by_id(state).name_in_rdb if state is not None and state != '' else None, 'geocoder': geocoder#, #'latitudeColumn': Option[String], #'longitudeColumn': Option[String], #'cacheCode': Option[String] } elif command_id == cmd.MIMIR_KEY_REPAIR: column = dataset.column_by_id(arguments.get_value(pckg.PARA_COLUMN)) params = { "key" : column.name_in_rdb } elif command_id == cmd.MIMIR_MISSING_KEY: column = dataset.column_by_id(arguments.get_value(pckg.PARA_COLUMN)) params = column.name_in_rdb # Set MISSING ONLY to FALSE to ensure that all rows are returned #params += ['MISSING_ONLY(FALSE)'] # Need to run this lens twice in order to generate row ids for # any potential new tuple elif command_id == cmd.MIMIR_MISSING_VALUE: params = list() for col in arguments.get_value(cmd.PARA_COLUMNS, default_value=[]): f_col = dataset.column_by_id(col.get_value(pckg.PARA_COLUMN)) param = f_col.name_in_rdb col_constraint = col.get_value( cmd.PARA_COLUMNS_CONSTRAINT, raise_error=False ) if col_constraint == '': col_constraint = None #if not col_constraint is None: # param = param + ' ' + str(col_constraint).replace("'", "\'\'").replace("OR", ") OR (") #param = '\'(' + param + ')\'' params.append(param) elif command_id == cmd.MIMIR_PICKER: # Compute the input columns inputs = [] for col in arguments.get_value(cmd.PARA_SCHEMA): c_col = col.get_value(cmd.PARA_PICKFROM) column = dataset.column_by_id(c_col) inputs.append(column.name_in_rdb) # Compute the output column output = arguments.get_value(cmd.PARA_PICKAS, default_value = inputs[0]) if output == "": output = inputs[0] else: output = dataset.get_unique_name(output.strip().upper()) # Compute the final parameter list params = { "inputs" : inputs, "output" : output } elif command_id == cmd.MIMIR_TYPE_INFERENCE: params = [str(arguments.get_value(cmd.PARA_PERCENT_CONFORM))] elif command_id == cmd.MIMIR_SHAPE_DETECTOR: dseModel = arguments.get_value(cmd.PARA_MODEL_NAME) params = [] if not dseModel is None: params = [str(dseModel)] elif command_id == cmd.MIMIR_COMMENT: commentsParams = [] for idx, comment in enumerate(arguments.get_value(cmd.PARA_COMMENTS)): commentParam = {} # If target is defined, it is the column that we're trying to annotate # If unset (or empty), it means we're annotating the row. column_id = comment.get_value(cmd.PARA_EXPRESSION, None) if column_id is not None: column = dataset.column_by_id(column_id) commentParam['target'] = column.name_in_rdb # The comment commentParam['comment'] = comment.get_value(cmd.PARA_COMMENT) # If rowid is defined, it is the row that we're trying to annotate. # If unset (or empty), it means that we're annotating all rows rowid = comment.get_value(cmd.PARA_ROWID, None) if (rowid is not None) and (rowid != ""): # If rowid begins with '=', it's a formula if rowid[0] == '=': commentParam['condition'] = rowid[1:] else: commentParam['rows'] = [ int(rowid) ] #TODO: handle result columns commentsParams.append(commentParam) params = {'comments' : commentsParams} elif command_id == cmd.MIMIR_PIVOT: column = dataset.column_by_id(arguments.get_value(pckg.PARA_COLUMN)) params = { "target" : column.name_in_rdb, "keys" : [], "values" : [] } for col_arg in arguments.get_value(cmd.PARA_VALUES): col = dataset.column_by_id(col_arg.get_value(cmd.PARA_VALUE)) params["values"].append(col.name_in_rdb) for col_arg in arguments.get_value(cmd.PARA_KEYS, default_value=[]): col = dataset.column_by_id(col_arg.get_value(cmd.PARA_KEY)) params["keys"].append(col.name_in_rdb) if len(params["values"]) < 1: raise ValueError("Need at least one value column") # store_as_dataset = arguments.get_value(cmd.PARA_RESULT_DATASET) elif command_id == cmd.MIMIR_SHRED: params = { "keepOriginalColumns" : arguments.get_value(cmd.PARA_KEEP_ORIGINAL) } shreds = [] global_input_col = dataset.column_by_id(arguments.get_value(cmd.PARA_COLUMN_NAME)) for (idx, shred) in enumerate(arguments.get_value(cmd.PARA_COLUMNS)): output_col = shred.get_value(cmd.PARA_OUTPUT_COLUMN) if output_col is None: output_col = "{}_{}".format(global_input_col,idx) config = {} shred_type = shred.get_value(cmd.PARA_TYPE) expression = shred.get_value(cmd.PARA_EXPRESSION) group = shred.get_value(cmd.PARA_INDEX) if shred_type == "pattern": config["regexp"] = expression config["group"] = int(group) elif shred_type == "field": config["separator"] = expression config["field"] = int(group) elif shred_type == "explode": config["separator"] = expression elif shred_type == "pass": pass elif shred_type == "substring": range_parts = re.match("([0-9]+)(([+\\-])([0-9]+))?", expression) # print(range_parts) # Mimir expects ranges to be given from start (inclusive) to end (exclusive) # in a zero-based numbering scheme. # Vizier expects input ranges to be given in a one-based numbering scheme. # Convert to this format if range_parts is None: raise ValueError("Substring requires a range of the form '10', '10-11', or '10+1', but got '{}'".format(expression)) config["start"] = int(range_parts.group(1))-1 # Convert 1-based numbering to 0-based if range_parts.group(2) is None: config["end"] = config["start"] + 1 # if only one character, split one character elif range_parts.group(3) == "+": config["end"] = config["start"] + int(range_parts.group(4)) # start + length elif range_parts.group(3) == "-": config["end"] = int(range_parts.group(4)) # Explicit end, 1-based -> 0-based and exclusive cancel out else: raise ValueError("Invalid expression '{}' in substring shredder".format(expression)) # print("Shredding {} <- {} -- {}".format(output_col,config["start"],config["end"])) else: raise ValueError("Invalid Shredding Type '{}'".format(shred_type)) shreds.append({ **config, "op" : shred_type, "input" : global_input_col.name_in_rdb, "output" : output_col, }) params["shreds"] = shreds # store_as_dataset = arguments.get_value(cmd.PARA_RESULT_DATASET) else: raise ValueError("Unknown Mimir lens '{}'".format(command_id)) # Create Mimir lens mimir_lens_response = mimir.createLens( mimir_table_name, params, command_id, arguments.get_value(cmd.PARA_MATERIALIZE_INPUT, default_value=True), human_readable_name = ds_name.upper() ) lens_name = mimir_lens_response['name'] lens_schema = mimir_lens_response['schema'] lens_properties = mimir_lens_response['properties'] ds = MimirDatasetHandle.from_mimir_result(lens_name, lens_schema, lens_properties, ds_name) if command_id in LENSES_THAT_SHOULD_NOT_DISPLAY_TABLES: print_dataset_schema(outputs, ds_name, ds.columns) else: from vizier.api.webservice import server ds_output = server.api.datasets.get_dataset( project_id=context.project_id, dataset_id=ds.identifier, offset=0, limit=10 ) outputs.stdout.append(DatasetOutput(ds_output)) # Return task result return ExecResult( outputs=outputs, provenance=ModuleProvenance( read={input_ds_name: dataset.identifier}, write={ds_name: DatasetDescriptor( identifier=ds.identifier, name=ds_name, columns=ds.columns )} ) )
def compute_unload_dataset(self, args, context): """Execute unload dataset command. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get the new dataset name. Raise exception if a dataset with the # specified name already exsists. ds_name = args.get_value(pckg.PARA_DATASET).lower() if not is_valid_name(ds_name): raise ValueError('invalid dataset name \'' + ds_name + '\'') # Get components of the load source. Raise exception if the source # descriptor is invalid. unload_format = args.get_value(cmd.PARA_UNLOAD_FORMAT) options = args.get_value(cmd.PARA_UNLOAD_OPTIONS, raise_error=False) m_opts = [] if not options is None: for option in options: unload_opt_key = option.get_value(cmd.PARA_UNLOAD_OPTION_KEY) unload_opt_val = option.get_value(cmd.PARA_UNLOAD_OPTION_VALUE) m_opts.append({ 'name': unload_opt_key, 'value': unload_opt_val }) # Execute load command. dataset = context.get_dataset(ds_name) result = self.api.unload_dataset(dataset=dataset, datastore=context.datastore, filestore=context.filestore, unload_format=unload_format, options=m_opts, resources=context.resources) # Delete the uploaded file (of load was from file). A reference to the # created dataset is in the resources and will be used if the module is # re-executed. #file_id = result.resources[apibase.RESOURCE_FILEID] #if not file_id is None: # context.filestore.delete_file(file_id) # Create result object outputhtml = HtmlOutput(''.join([ "<div><a href=\"" + config.webservice.app_path + "/projects/" + str(context.project_id) + "/files/" + out_file.identifier + "\" download=\"" + out_file.name + "\">Download " + out_file.name + "</a></div>" for out_file in result.resources[apibase.RESOURCE_FILEID] ])) return ExecResult(outputs=ModuleOutputs(stdout=[outputhtml]), provenance=ModuleProvenance(read={ ds_name: context.datasets.get(ds_name.lower(), None) }, write=dict()))
def execute_script(self, args: ModuleArguments, context: TaskContext) -> ExecResult: """Execute a Python script in the given context. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get Python script from user arguments. It is the source for VizierDBClient cell_src = args.get_value(cmd.PYTHON_SOURCE) # prepend python objects exported in previous cells to the source exported_methods = [ context.datastore.get_object(descriptor.identifier).decode() for name, descriptor in context.dataobjects.items() if descriptor.artifact_type == ARTIFACT_TYPE_PYTHON ] overrides = [ "def show(x):", " global vizierdb", " vizierdb.show(x)", "def export(x):", " global vizierdb", " vizierdb.export_module(x)", "def return_type(dt):", " def wrap(x):", " return x", " return wrap", "pass" ] injected_source = "\n".join(exported_methods + overrides) injected_lines = len([x for x in injected_source if x == '\n']) + 1 source = injected_source + '\n' + cell_src # Initialize the scope variables that are available to the executed # Python script. At this point this includes only the client to access # and manipulate datasets in the undelying datastore # # Use "any" type, since there's a (probably unnecessary) hack down # below that creates something that pretends to be a client. client: Any = VizierDBClient(datastore=context.datastore, datasets=context.datasets, source=cell_src, dataobjects=context.dataobjects, project_id=context.project_id, output_format=args.get_value( cmd.OUTPUT_FORMAT, default_value=OUTPUT_TEXT)) variables = {VARS_DBCLIENT: client, VARS_OPEN: client.pycell_open} # Redirect standard output and standard error streams out = sys.stdout err = sys.stderr stream: List[Tuple[str, str]] = list() sys.stdout = cast(TextIO, OutputStream(tag='out', stream=stream)) sys.stderr = cast(TextIO, OutputStream(tag='err', stream=stream)) # Keep track of exception that is thrown by the code exception = None resdata: Dict[str, Any] = dict() # Run the Python code try: python_cell_preload(variables, client=client) if SANDBOX_PYTHON_EXECUTION == "True": json_data = { 'source': source, 'datasets': context.datasets, 'dataobjects': context.dataobjects, 'datastore': context.datastore.__class__.__name__, 'basepath': context.datastore.base_path, 'project_id': context.project_id, 'output_format': client.output_format } res = requests.post(SANDBOX_PYTHON_URL, json=json_data) resdata = res.json() client = DotDict() for key, value in resdata['provenance'].items(): client.setattr(key, value) client.setattr('descriptors', {}) client.setattr('datastore', context.datastore) client.setattr('datasets', resdata['datasets']) client.setattr('dataobjects', resdata['dataobjects']) client.setattr('output_format', resdata['output_format']) client.setattr('stdout', [ OutputObject(type=item['type'], value=item['value']) for item in resdata.get('explicit_stdout', []) ]) else: exec(source, variables, variables) except Exception as ex: exception = ex finally: # Make sure to reverse redirection of output streams sys.stdout = out sys.stderr = err # Set module outputs outputs = ModuleOutputs() is_success = (exception is None) if SANDBOX_PYTHON_EXECUTION == "True": for text in resdata['stdout']: outputs.stdout.append( OutputObject(value=text, type=client.output_format)) for text in resdata['stderr']: outputs.stderr.append(TextOutput(text)) is_success = False else: for tag, text in stream: text = ''.join(text).strip() if tag == 'out': outputs.stdout.append( OutputObject(value=text, type=client.output_format)) else: outputs.stderr.append(TextOutput(text)) is_success = False for output in client.stdout: outputs.stdout.append(output) if is_success: # Create provenance information. Ensure that all dictionaries # contain elements of expected types, i.e, ensure that the user did # not attempt anything tricky. read = dict() for name in client.read: if not isinstance(name, str): raise RuntimeError('invalid key for mapping dictionary') if name in context.datasets: read[name] = context.datasets[name].identifier if not isinstance(read[name], str): raise RuntimeError( 'invalid element in read mapping dictionary: {} (expecting str)' .format(read[name])) elif name in context.dataobjects: read[name] = context.dataobjects[name].identifier if not isinstance(read[name], str): raise RuntimeError( 'invalid element in read mapping dictionary: {} (expecting str)' .format(read[name])) else: raise RuntimeError('Unknown read artifact {}'.format(name)) write = dict() for name in client.write: if not isinstance(name, str): raise RuntimeError('invalid key for mapping dictionary') if name in client.datasets: write_descriptor = client.datasets[name] if not isinstance(write_descriptor, ArtifactDescriptor): raise RuntimeError( 'invalid element in write mapping dictionary: {} (expecting str)' .format(name)) else: write[name] = write_descriptor elif name in client.dataobjects: #wr_id = client.dataobjects[name] write_descriptor = client.dataobjects[name] #write_descriptor = client.datastore.get_object(identifier=wr_id) if not isinstance(write_descriptor, ArtifactDescriptor): raise RuntimeError( 'invalid element in write mapping dictionary: {} (expecting str)' .format(name)) else: write[name] = write_descriptor else: raise RuntimeError( 'Unknown write artifact {}'.format(name)) print("Pycell Execution Finished") print(" read: {}".format(read)) print(" write: {}".format(write)) provenance = ModuleProvenance(read=read, write=write, delete=client.delete) else: print("ERROR: {}".format(exception)) assert (exception is not None) outputs.error(exception, offset_lines=-injected_lines) provenance = ModuleProvenance() # Return execution result return ExecResult(is_success=is_success, outputs=outputs, provenance=provenance)
def set_success( self, task_id: str, finished_at: datetime = get_current_time(), result: ExecResult = ExecResult() ) -> Optional[bool]: """Set status of the module that is associated with the given task identifier to success. The finished_at property of the timestamp is set to the given value or the current time (if None). If case of a successful module execution the database state and module provenance information are also adjusted together with the module output streams. If the workflow has pending modules the first pending module will be executed next. Returns True if the state of the workflow was changed and False otherwise. The result is None if the project or task did not exist. """ with self.backend.lock: # Get task handle and remove it from the internal index. The result # is None if the task does not exist. task = pop_task(tasks=self.tasks, task_id=task_id) if task is None: return None # Get the handle for the head workflow of the specified branch and # the index for the module matching the identifier in the task. workflow, module_index = self.get_task_module(task) if workflow is None or module_index == -1: return None # Notify the backend that the task is finished self.backend.task_finished(task_id) module = workflow.modules[module_index] if not module.is_running: # The result is false if the state of the module did not change return False # print("UPDATED ARGUMENTS: {}".format(result.updated_arguments)) module.set_success(finished_at=finished_at, outputs=result.outputs, provenance=result.provenance, updated_arguments=result.updated_arguments) context = compute_context(workflow.modules[0:module_index]) context = result.provenance.get_database_state(context) import sys sys.stderr.write( "Module {} finished at {} / Context: {} / Reads: [{}] / Writes: [{}]" .format( module.external_form, finished_at, context, ",".join(result.provenance.read) if result.provenance.read is not None else "", ",".join(result.provenance.write) if result.provenance.write is not None else "", )) for next_module in workflow.modules[module_index + 1:]: if not next_module.is_pending: # This case can only happen if we allow parallel execution # of modules in the future. At this point it should not # occur. raise RuntimeError('invalid workflow state') elif not next_module.provenance.requires_exec(context): # print("Module {} does not need re-execution, skipping".format(next_module)) context = next_module.provenance.get_database_state( context) next_module.set_success( finished_at=finished_at, outputs=next_module.outputs, provenance=next_module.provenance, ) else: # print("Scheduling {} for execution".format(next_module)) command = next_module.command package_id = command.package_id command_id = command.command_id external_form = command.to_external_form( command=self.packages[package_id].get(command_id), datasets=dict( (name, cast(DatasetDescriptor, context[name])) for name in context if context[name].is_dataset)) # If the backend is going to run the task immediately we # need to adjust the module state state = self.backend.next_task_state() if state == mstate.MODULE_RUNNING: next_module.set_running(external_form=external_form, started_at=get_current_time()) else: next_module.update_property( external_form=external_form) self.execute_module(project_id=task.project_id, branch_id=workflow.branch_id, module=next_module, artifacts=context) break return True
def execute_query(self, args: ModuleArguments, context: TaskContext) -> ExecResult: """Execute a SQL query in the given context. Parameters ---------- args: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ # Get SQL source code that is in this cell and the global # variables source = args.get_value(cmd.PARA_SQL_SOURCE) if not source.endswith(';'): source = source ds_name = args.get_value(cmd.PARA_OUTPUT_DATASET, raise_error=False) # Get mapping of datasets in the context to their respective table # name in the Mimir backend mimir_table_names = dict() for ds_name_o in context.datasets: dataset_id = context.datasets[ds_name_o].identifier dataset = context.datastore.get_dataset(dataset_id) if dataset is None: raise ValueError('unknown dataset \'' + ds_name_o + '\'') mimir_table_names[ds_name_o] = dataset.identifier # Module outputs outputs = ModuleOutputs() is_success = True functions = { name: context.dataobjects[name].identifier for name in context.dataobjects if context.dataobjects[name].obj_type == ARTIFACT_TYPE_PYTHON } try: # Create the view from the SQL source view_name, dependencies, mimirSchema, properties, functionDeps = mimir.createView( datasets=mimir_table_names, query=source, functions=dict(functions)) ds = MimirDatasetHandle.from_mimir_result(view_name, mimirSchema, properties, ds_name) print(mimirSchema) if ds_name is None or ds_name == '': ds_name = "TEMPORARY_RESULT" from vizier.api.webservice import server ds_output = server.api.datasets.get_dataset( project_id=context.project_id, dataset_id=ds.identifier, offset=0, limit=10) if ds_output is None: outputs.stderr.append( TextOutput("Error displaying dataset {}".format(ds_name))) else: ds_output['name'] = ds_name outputs.stdout.append(DatasetOutput(ds_output)) dependenciesDict: Dict[str, str] = { dep_name.lower(): get_artifact_id(dep) for dep_name, dep in [( dep_name, context.datasets.get(dep_name.lower(), None)) for dep_name in dependencies] if dep is not None } functionDepDict: Dict[str, str] = { dep_name.lower(): get_artifact_id(dep) for dep_name, dep in [( dep_name, context.dataobjects.get(dep_name.lower(), None)) for dep_name in dependencies] if dep is not None } # print("---- SQL DATASETS ----\n{}\n{}".format(context.datasets, dependencies)) provenance = ModuleProvenance(write={ ds_name: DatasetDescriptor(identifier=ds.identifier, name=ds_name, columns=ds.columns) }, read={ **dependenciesDict, **functionDepDict }) except Exception as ex: provenance = ModuleProvenance() outputs.error(ex) is_success = False # Return execution result return ExecResult(is_success=is_success, outputs=outputs, provenance=provenance)
def compute(self, command_id: str, arguments: "ModuleArguments", context: TaskContext) -> ExecResult: """Compute results for commands in the sampling package using the set of user-provided arguments and the current database state. Parameters ---------- command_id: string Unique identifier for a command in a package declaration arguments: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ input_ds_name = arguments.get_value(cmd.PARA_INPUT_DATASET).lower() input_dataset: DatasetDescriptor = context.get_dataset(input_ds_name) if input_dataset is None: raise ValueError('unknown dataset \'' + input_ds_name + '\'') output_ds_name = arguments.get_value(cmd.PARA_OUTPUT_DATASET, raise_error=False) if output_ds_name is None or output_ds_name == "": output_ds_name = input_ds_name + "_SAMPLE" output_ds_name = output_ds_name.lower() # Load the sampling configuration sample_mode = None if command_id == cmd.BASIC_SAMPLE: sampling_rate = float(arguments.get_value(cmd.PARA_SAMPLING_RATE)) if sampling_rate > 1.0 or sampling_rate < 0.0: raise Exception("Sampling rate must be between 0.0 and 1.0") sample_mode = { "mode": cmd.SAMPLING_MODE_UNIFORM_PROBABILITY, "probability": sampling_rate } elif command_id == cmd.MANUAL_STRATIFIED_SAMPLE or command_id == cmd.AUTOMATIC_STRATIFIED_SAMPLE: column = arguments.get_value(cmd.PARA_STRATIFICATION_COLUMN) column_defn = input_dataset.columns[column] if command_id == cmd.MANUAL_STRATIFIED_SAMPLE: strata = [{ "value": stratum.get_value(cmd.PARA_STRATUM_VALUE), "probability": stratum.get_value(cmd.PARA_SAMPLING_RATE) } for stratum in arguments.get_value(cmd.PARA_STRATA)] else: probability = arguments.get_value(cmd.PARA_SAMPLING_RATE) strata = self.get_automatic_strata(input_dataset, column_defn, probability) sample_mode = { "mode": cmd.SAMPLING_MODE_STRATIFIED_ON, "column": column_defn.name, "type": column_defn.data_type, "strata": strata } else: raise Exception("Unknown sampling command: {}".format(command_id)) table_name, schema = mimir.createSample(input_dataset.identifier, sample_mode, result_name="SAMPLE_" + get_unique_identifier()) ds = MimirDatasetHandle.from_mimir_result(table_name, schema, properties={}, name=output_ds_name) # And start rendering some output outputs = ModuleOutputs() ds_output = server.api.datasets.get_dataset( project_id=context.project_id, dataset_id=ds.identifier, offset=0, limit=10) if ds_output is not None: ds_output['name'] = output_ds_name outputs.stdout.append(DatasetOutput(ds_output)) else: outputs.stderr.append(TextOutput("Error displaying dataset")) # Record Reads and writes provenance = ModuleProvenance( read={input_ds_name: input_dataset.identifier}, write={ output_ds_name: DatasetDescriptor(identifier=ds.identifier, name=output_ds_name, columns=ds.columns) }) # Return task result return ExecResult(outputs=outputs, provenance=provenance)
def compute(self, command_id, arguments, context): """Compute results for commands in the Mimir package using the set of user-provided arguments and the current database state. Parameters ---------- command_id: string Unique identifier for a command in a package declaration arguments: vizier.viztrail.command.ModuleArguments User-provided command arguments context: vizier.engine.task.base.TaskContext Context in which a task is being executed Returns ------- vizier.engine.task.processor.ExecResult """ outputs = ModuleOutputs() store_as_dataset = None update_rows = False lens_annotations = [] # Get dataset. Raise exception if dataset is unknown. ds_name = arguments.get_value(pckg.PARA_DATASET).lower() dataset = context.get_dataset(ds_name) mimir_table_name = dataset.table_name # Keep track of the name of the input dataset for the provenance # information. input_ds_name = ds_name if command_id == cmd.MIMIR_DOMAIN: column = dataset.column_by_id(arguments.get_value( pckg.PARA_COLUMN)) params = [column.name_in_rdb] elif command_id == cmd.MIMIR_GEOCODE: geocoder = arguments.get_value(cmd.PARA_GEOCODER) params = ['GEOCODER(' + geocoder + ')'] add_column_parameter(params, 'HOUSE_NUMBER', dataset, arguments, cmd.PARA_HOUSE_NUMBER) add_column_parameter(params, 'STREET', dataset, arguments, cmd.PARA_STREET) add_column_parameter(params, 'CITY', dataset, arguments, cmd.PARA_CITY) add_column_parameter(params, 'STATE', dataset, arguments, cmd.PARA_STATE) # Add columns for LATITUDE and LONGITUDE column_counter = dataset.max_column_id() + 1 cname_lat = dataset.get_unique_name('LATITUDE') cname_lon = dataset.get_unique_name('LONGITUDE') dataset.columns.append( MimirDatasetColumn(identifier=column_counter, name_in_dataset=cname_lat, data_type=DATATYPE_REAL)) dataset.columns.append( MimirDatasetColumn(identifier=column_counter + 1, name_in_dataset=cname_lon, data_type=DATATYPE_REAL)) params.append('RESULT_COLUMNS(' + cname_lat + ',' + cname_lon + ')') elif command_id == cmd.MIMIR_KEY_REPAIR: column = dataset.column_by_id(arguments.get_value( pckg.PARA_COLUMN)) params = [column.name_in_rdb] update_rows = True elif command_id == cmd.MIMIR_MISSING_KEY: column = dataset.column_by_id(arguments.get_value( pckg.PARA_COLUMN)) params = [column.name_in_rdb] # Set MISSING ONLY to FALSE to ensure that all rows are returned params += ['MISSING_ONLY(FALSE)'] # Need to run this lens twice in order to generate row ids for # any potential new tuple mimir_lens_response = mimir.createLens( dataset.table_name, params, command_id, arguments.get_value(cmd.PARA_MATERIALIZE_INPUT, default_value=True)) (mimir_table_name, lens_annotations) = (mimir_lens_response.lensName(), mimir_lens_response.annotations()) params = [ROW_ID, 'MISSING_ONLY(FALSE)'] update_rows = True elif command_id == cmd.MIMIR_MISSING_VALUE: params = list() for col in arguments.get_value(cmd.PARA_COLUMNS, default_value=[]): f_col = dataset.column_by_id(col.get_value(pckg.PARA_COLUMN)) param = f_col.name_in_rdb col_constraint = col.get_value(cmd.PARA_COLUMNS_CONSTRAINT, raise_error=False) if col_constraint == '': col_constraint = None if not col_constraint is None: param = param + ' ' + str(col_constraint).replace( "'", "\'\'").replace("OR", ") OR (") param = '\'(' + param + ')\'' params.append(param) elif command_id == cmd.MIMIR_PICKER: pick_from = list() column_names = list() for col in arguments.get_value(cmd.PARA_SCHEMA): c_col = col.get_value(cmd.PARA_PICKFROM) column = dataset.column_by_id(c_col) pick_from.append(column.name_in_rdb) column_names.append(column.name.upper().replace(' ', '_')) # Add result column to dataset schema pick_as = arguments.get_value(cmd.PARA_PICKAS, default_value='PICK_ONE_' + '_'.join(column_names)) pick_as = dataset.get_unique_name(pick_as.strip().upper()) dataset.columns.append( MimirDatasetColumn(identifier=dataset.max_column_id() + 1, name_in_dataset=pick_as)) params = ['PICK_FROM(' + ','.join(pick_from) + ')'] params.append('PICK_AS(' + pick_as + ')') elif command_id == cmd.MIMIR_SCHEMA_MATCHING: store_as_dataset = arguments.get_value(cmd.PARA_RESULT_DATASET) if store_as_dataset in context.datasets: raise ValueError('dataset \'' + store_as_dataset + '\' exists') if not is_valid_name(store_as_dataset): raise ValueError('invalid dataset name \'' + store_as_dataset + '\'') column_names = list() params = ['\'' + ROW_ID + ' int\''] for col in arguments.get_value(cmd.PARA_SCHEMA): c_name = col.get_value(pckg.PARA_COLUMN) c_type = col.get_value(cmd.PARA_TYPE) params.append('\'' + c_name + ' ' + c_type + '\'') column_names.append(c_name) elif command_id == cmd.MIMIR_TYPE_INFERENCE: params = [str(arguments.get_value(cmd.PARA_PERCENT_CONFORM))] elif command_id == cmd.MIMIR_SHAPE_DETECTOR: dseModel = arguments.get_value(cmd.PARA_MODEL_NAME) params = [] if not dseModel is None: params = [str(dseModel)] elif command_id == cmd.MIMIR_COMMENT: params = [] for comment in arguments.get_value(cmd.PARA_COMMENTS): c_expr = comment.get_value(cmd.PARA_EXPRESSION) c_cmnt = comment.get_value(cmd.PARA_COMMENT) c_rowid = comment.get_value(cmd.PARA_ROWID) if c_rowid is None: params.append('COMMENT(' + c_expr + ', \'' + c_cmnt + '\') ') else: params.append('COMMENT(' + c_expr + ', \'' + c_cmnt + '\', \'' + c_rowid + '\') ') result_cols = [] for col in arguments.get_value(cmd.PARA_RESULT_COLUMNS): c_name = col.get_value(pckg.PARA_COLUMN) result_cols.append(c_name) if len(result_cols) > 0: params.append('RESULT_COLUMNS(' + ','.join(result_cols) + ')') else: raise ValueError('unknown Mimir lens \'' + str(lens) + '\'') # Create Mimir lens if command_id in [ cmd.MIMIR_SCHEMA_MATCHING, cmd.MIMIR_TYPE_INFERENCE, cmd.MIMIR_SHAPE_DETECTOR ]: lens_name = mimir.createAdaptiveSchema(mimir_table_name, params, command_id.upper()) else: mimir_lens_response = mimir.createLens( mimir_table_name, params, command_id.upper(), arguments.get_value(cmd.PARA_MATERIALIZE_INPUT, default_value=True), human_readable_name=ds_name.upper()) (lens_name, lens_annotations) = (mimir_lens_response['lensName'], mimir_lens_response['annotations']) # Create a view including missing row ids for the result of a # MISSING KEY lens if command_id == cmd.MIMIR_MISSING_KEY: lens_name, row_counter = create_missing_key_view( dataset, lens_name, column) dataset.row_counter = row_counter # Create datastore entry for lens. if not store_as_dataset is None: columns = list() for c_name in column_names: col_id = len(columns) columns.append( MimirDatasetColumn(identifier=col_id, name_in_dataset=c_name)) ds = context.datastore.register_dataset( table_name=lens_name, columns=columns, annotations=dataset.annotations) ds_name = store_as_dataset else: ds = context.datastore.register_dataset( table_name=lens_name, columns=dataset.columns, annotations=dataset.annotations) # Add dataset schema and returned annotations to output if command_id in [ cmd.MIMIR_SCHEMA_MATCHING, cmd.MIMIR_TYPE_INFERENCE, cmd.MIMIR_SHAPE_DETECTOR ]: print_dataset_schema(outputs, ds_name, ds.columns) else: ds_output = server.api.datasets.get_dataset( project_id=context.project_id, dataset_id=ds.identifier, offset=0, limit=10) outputs.stdout.append(DatasetOutput(ds_output)) print_lens_annotations(outputs, lens_annotations) dsd = DatasetDescriptor(identifier=ds.identifier, columns=ds.columns, row_count=ds.row_count) result_resources = dict() result_resources[base.RESOURCE_DATASET] = ds.identifier # Return task result return ExecResult(outputs=outputs, provenance=ModuleProvenance( read={input_ds_name: dataset.identifier}, write={ds_name: dsd}, resources=result_resources))