Пример #1
0
def main():
    niigz = "${petInputNii}"

    nii = gzipd(niigz)
    dst = nii.replace("_input_", "_").replace("_copy", "")
    shutil.move(nii, dst)

    tags = {
        "pet": dst,
    }
    #if "${config.set_origin_to_centerOfMass_pet}" == "true":
    if False:
        run_matlab(os.path.join(TPL_PATH, "set_origin_to_centerOfMass_pet.m"),
                   tags, "set_origin_to_centerOfMass.m")

    run_shell("gzip {}".format(dst))
Пример #2
0
def main():
    for d in ["baker", "stats"]:
        os.mkdir(d)

    tags = {
        "bakerDir": "${bakerDir}",
        "atlas": gzipd("${atlas}"),
        "pet": gzipd("${pet4070}"),
        "gmSpm": gzipd("${gmSpm}"),
        "wmSpm": gzipd("${wmSpm}"),
        "csfSpm": gzipd("${csfSpm}"),
        "boneSpm": gzipd("${boneSpm}"),
        "softSpm": gzipd("${softSpm}"),
        "atlasCereb": gzipd("${atlasCereb}"),
        "scannerResolution": "${scannerResolution}",
    }

    run_matlab(os.path.join(TPL_PATH, "suvr_baker.m"), tags, "suvr_baker.m")

    #atlas
    src = "FINAL0_edited_aparc+aseg.nii"
    dst = os.path.join("baker", add_suffix(tags["atlas"], "edited-baker"))
    dst = dst.replace("_copy", "")
    shutil.copy(src, dst)
    run_shell("gzip {}".format(dst))

    #suvr
    src = "FINAL0_suvr_normalized_infcereg.nii"
    dst = os.path.join("baker", add_suffix(tags["pet"], "ref-infcereg_suvr"))
    suvr = dst.replace("_copy", "")
    shutil.copy(src, suvr)
    run_shell("gzip {}".format(suvr))
    suvr = suvr + ".gz"

    #stat
    stats = os.path.join("stats",
                         os.path.basename(suvr).replace(".nii.gz", ".tsv"))
    atlas = "${atlas}"
    imgstats = ImgStatsFromAtlas(suvr, atlas, stats)
    imgstats.compute()

    #roigroups
    src = "FINAL0_roigroups.mat"
    dst = os.path.join("baker", add_suffix(tags["pet"], "pvc-rousset"))
    dst = dst.replace("_copy", "").replace(".nii", ".mat")
    shutil.copy(src, dst)
Пример #3
0
def seg_suit(img, spmDir):
    for d in ["suit", "mask", "transform"]:
        os.mkdir(d)

    nii = gzipd(img)
    generic = "img.nii"
    shutil.move(nii, generic)
    tags = {
        "anat": generic,
        "spmDir": spmDir,
        }

    run_matlab(os.path.join(TPL_PATH, "seg_suit.m"), tags, "segmentation.m")


    src = "iCerebellum-SUIT.nii"
    dst = "suit/{}_suit.nii".format(PARTICIPANT)
    shutil.move(src, dst)
    run_shell("gzip {}".format(dst))

    '''
Пример #4
0
def main():
    anat = "${anatInputNii}"
    nu = "${nuInputNii}"
    atlas = "${atlasInputNii}"

    dsts = []
    for niigz in [anat, nu, atlas]:
        nii = gzipd(niigz)
        dst = nii.replace("_input_", "_").replace("_copy", "")
        shutil.move(nii, dst)
        dsts.append(dst)

    tags = {
        "anat": dsts[0],
        "nu": dsts[1],
        "atlas": dsts[2],
    }
    if "${config.set_origin_to_centerOfMass_anat}" != "false":
        run_matlab(os.path.join(TPL_PATH, "set_origin_to_centerOfMass_anat.m"),
                   tags, "set_origin_to_centerOfMass.m")

    for dst in dsts:
        run_shell("gzip {}".format(dst))
Пример #5
0
def seg_spm12(img, spmDir):
    for d in ["mask", "transform"]:
        os.mkdir(d)

    tags = {
        "anat": gzipd(img),
        "spmDir": spmDir,
        }

    run_matlab(os.path.join(TPL_PATH, "seg_spm12.m"), tags, "segmentation.m")

    for src in glob("c*nii"):
        dst_tpl = "mask/{}_roi-c{}${suffix.mask}".replace(".gz", "")
        dst = dst_tpl.format(PARTICIPANT, src[1])
        shutil.copy(src, dst)
        run_shell("gzip {}".format(dst))

    anat2tpl = "transform/{}${suffix.anat2tpl}".format(PARTICIPANT)
    shutil.copy(glob("y_*.nii")[0], anat2tpl)
    run_shell("gzip {}".format(anat2tpl))

    tpl2anat = "transform/{}${suffix.tpl2anat}".format(PARTICIPANT)
    shutil.copy(glob("iy_*.nii")[0], tpl2anat)
    run_shell("gzip {}".format(tpl2anat))
Пример #6
0
def main():
    transitional = "${transitional}"
    mode = "${config.pet2anat.mode}"

    os.mkdir("pet")
    os.mkdir("centiloid")
    os.mkdir("tmp")

    pet4070 = "${pet4070}"
    pet5070 = "${pet5070}"  #centiloid
    pet2anat = "${pet2anat}"

    anat = "${anat}"
    brain = "${brain}"
    gmwm = "${gmwm}"

    petParams = nfmap2dict("${pet2anatPetParams}")
    centiloidParams = nfmap2dict("${pet2anatCentiloidParams}")
    tmpParams = {
        "mask": "null",
        "fwhm": 6,
    }

    petToEstimate = "${petToEstimate}"
    if "${config.set_origin_to_centerOfMass_pet}" == "true":

        dsts = []
        for niigz in [petToEstimate, pet4070, pet5070]:
            nii = gzipd(niigz)
            #dst = nii.replace("_input_", "_").replace("_copy", "")
            #shutil.move(nii, dst)
            #dsts.append(dst)
            dsts.append(nii)

        tags = {
            "petToEstimate": dsts[0],
            "pet4070": dsts[1],
            "pet5070": dsts[2],
        }
        run_matlab(os.path.join(TPL_PATH, "set_origin_to_centerOfMass_pet.m"),
                   tags, "set_origin_to_centerOfMass.m")

        for dst in dsts:
            run_shell("gzip {}".format(dst))

        petToEstimate = dsts[0].replace("_copy", "_acpc") + ".gz"
        os.rename(dsts[0] + ".gz", petToEstimate)

        pet4070 = dsts[1].replace("_copy", "_acpc") + ".gz"
        os.rename(dsts[1] + ".gz", pet4070)

        pet5070 = dsts[2].replace("_copy", "_acpc") + ".gz"
        os.rename(dsts[2] + ".gz", pet5070)

    for pet, _dir, params in zip(
        [pet4070, pet5070, pet4070],
        ["pet", "centiloid", "tmp"],
        [petParams, centiloidParams, tmpParams],
    ):

        output = os.path.join(_dir,
                              add_suffix(pet,
                                         "space-anat")).replace("_acpc", "")

        # Apply transform
        if transitional != "false":
            transitPet = glob(
                "{}/tmp/*tmp-estimate.nii.gz".format(transitional))[0]
            transit2anat = glob(
                "{}/transform/*${suffix.pet2anat}".format(transitional))[0]
            petInTransit = applyWarpImageMultiTransform(
                pet, transitPet, pet2anat, "petInTransit.nii.gz")
            petTemp = applyWarpImageMultiTransform(petInTransit, anat,
                                                   transit2anat)

        else:
            if mode == "ants":
                petTemp = applyWarpImageMultiTransform(pet, anat, pet2anat)
            elif mode == "spm":
                petTemp = estimatePet2Anat(petToEstimate,
                                           anat,
                                           mode="estwrite",
                                           other=pet,
                                           tag=_dir)

        # Masking step
        mask = params["mask"]
        cmd = "fslmaths {0} -mul {1} {0}"
        if mask == "brain":
            run_shell(cmd.format(petTemp, brain))

        elif mask == "gmwm":
            run_shell(cmd.format(petTemp, gmwm))

        elif mask == "null":
            pass

        else:
            warn([
                "Process: apply_pet2anat",
                "  {} option to mask {} data is not supported".format(
                    mask, pet),
                "  See default configuration for more information",
                "  {} data won't be masked".format(pet),
            ])

        # Smoothing step
        fwhm = params["fwhm"]
        try:
            sigma = int(fwhm) / 2.3548
            if sigma > 0:
                cmd = "fslmaths {0} -kernel gauss {1} -fmean {2}"
                run_shell(cmd.format(petTemp, sigma, output))
            else:
                cmd = "fslmaths {0} -fmean {1}"
                run_shell(cmd.format(petTemp, output))

        except:
            warn([
                "Process: apply_pet2anat",
                "  {} is not an integer".format(fwhm),
                "  {} data won't be smoothed".format(pet),
            ])
            cmd = "fslmaths {0} -fmean {1}"
            run_shell(cmd.format(petTemp, output))