Пример #1
0
    def atest_eval_sliver_matrics(self):
        import volumetry_evaluation as ve

        vol1 = np.zeros([20, 21, 22], dtype=np.int8)
        vol1[10:15, 10:15, 10:15] = 1

        vol2 = np.zeros([20, 21, 22], dtype=np.int8)
        vol2[10:15, 10:16, 10:15] = 1

        eval1 = ve.compare_volumes(vol1, vol2, [1, 1, 1])
        print eval1
Пример #2
0
    def sliver_compare_with_other_volume(self, segmentation_datap):
        """
        Compares actual Lisa data with other which are given by
        segmentation_datap. That means
        segmentation_datap = {
            'segmentation': 3d np.array,
            'crinfo': information about crop (optional)
            }

        """
        # if there is no segmentation, data can be stored in data3d. It is the
        # way how are data stored in sliver.
        if 'segmentation' in segmentation_datap.keys():
            segm_key = 'segmentation'
        else:
            segm_key = 'data3d'
        if 'crinfo' in segmentation_datap.keys():
            data3d_segmentation = qmisc.uncrop(
                segmentation_datap[segm_key],
                segmentation_datap['crinfo'],
                self.orig_shape)
        else:
            data3d_segmentation = segmentation_datap[segm_key]
        pass

        # now we can uncrop actual Lisa data
        data3d_segmentation_actual = qmisc.uncrop(
            self.segmentation,
            self.crinfo,
            self.orig_shape)

        evaluation = volumetry_evaluation.compare_volumes(
            data3d_segmentation_actual,
            data3d_segmentation,
            self.voxelsize_mm
            )
        score = volumetry_evaluation.sliver_score_one_couple(evaluation)
        segdiff = qmisc.crop(
            ((data3d_segmentation) - data3d_segmentation_actual),
            self.crinfo)
        return evaluation, score, segdiff