Пример #1
0
    def test_predict(self, data):
        raw_model = VW()
        raw_model.fit(data.x, data.y)

        model = VWRegressor()
        model.fit(data.x, data.y)

        assert np.allclose(raw_model.predict(data.x), model.predict(data.x))
        # ensure model can make multiple calls to predict
        assert np.allclose(raw_model.predict(data.x), model.predict(data.x))
Пример #2
0
    def test_predict(self, data):
        raw_model = VW()
        raw_model.fit(data.x, data.y)

        model = VWRegressor()
        model.fit(data.x, data.y)

        assert np.allclose(raw_model.predict(data.x), model.predict(data.x))
        # ensure model can make multiple calls to predict
        assert np.allclose(raw_model.predict(data.x), model.predict(data.x))
Пример #3
0
def test_repr():

    model = VW()
    expected = "VW('convert_labels:False', 'quiet:True', 'sgd:False')"
    assert expected == model.__repr__()

    model = VWClassifier()
    expected = "VWClassifier('convert_labels:False', "\
    "'loss_function:logistic', 'quiet:True', 'sgd:False')"
    assert expected == model.__repr__()

    model = VWRegressor()
    expected = "VWRegressor('convert_labels:False', 'quiet:True', 'sgd:False')"
    assert expected == model.__repr__()

    model = VW(convert_to_vw=False,
               oaa=3,
               loss_function='logistic',
               probabilities=True)
    expected = "VW('convert_labels:False', 'loss_function:logistic', "\
    "'oaa:3', 'probabilities:True', 'quiet:True', 'sgd:False')"
    assert expected == model.__repr__()
Пример #4
0
def test_sgd_param():

    model1 = VWRegressor(sgd=True)
    model2 = VWClassifier(sgd=True)
    assert model1.get_params()['sgd'] == True
    assert model2.get_params()['sgd'] == True
Пример #5
0
def test_save_load(tmp_path):
    train_file = str(tmp_path / "train.model")

    X = [[1, 2], [3, 4], [5, 6], [7, 8]]
    y = [1, 2, 3, 4]

    model_before = VWRegressor(l=100)
    model_before.fit(X, y)
    before_saving = model_before.predict(X)

    model_before.save(train_file)

    model_after = VWRegressor(l=100)
    model_after.load(train_file)
    after_loading = model_after.predict(X)

    assert all([a == b for a, b in zip(before_saving, after_loading)])
Пример #6
0
 def test_init(self):
     assert isinstance(VWRegressor(), VWRegressor)
Пример #7
0
from vowpalwabbit.sklearn_vw import VWRegressor

X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [1, 2, 3, 4]

model = VWRegressor(l=100)
model.fit(X, y)
print(model.predict(X))
model.save("/tmp/train.model")

model2 = VWRegressor(l=100)
model2.load("/tmp/train.model")
print(model2.predict(X))