def test(checkpoint_path=None):
    subsets = ['kpval', 'kptest', 'kprestval']

    quest_ids = []
    result = []

    config = ModelConfig()
    config.sample_negative = FLAGS.sample_negative
    config.use_fb_bn = FLAGS.use_fb_bn
    # Get model function
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # build and restore model
    model = model_fn(config, phase='test')
    model.build()

    sess = tf.Session(graph=tf.get_default_graph())
    tf.logging.info('Restore from model %s' %
                    os.path.basename(checkpoint_path))
    saver = tf.train.Saver()
    saver.restore(sess, checkpoint_path)

    for subset in subsets:
        _quest_ids, _result = test_worker(model, sess, subset)
        quest_ids += _quest_ids
        result += _result

    quest_ids = np.concatenate(quest_ids)
    # save results
    tf.logging.info('Saving results')
    res_file = FLAGS.result_format % (FLAGS.version, 'val')
    json.dump(result, open(res_file, 'w'))
    tf.logging.info('Done!')
    tf.logging.info('#Num eval samples %d' % len(result))
    return res_file, quest_ids
Пример #2
0
def test(checkpoint_path=None):
    batch_size = 64
    config = ModelConfig()
    config.sample_negative = FLAGS.sample_negative
    config.use_fb_bn = FLAGS.use_fb_bn
    # Get model function
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # build data reader
    reader = TestReader(batch_size=batch_size,
                        subset=TEST_SET,
                        use_fb_data=FLAGS.use_fb_data)
    if checkpoint_path is None:
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir %
                                             (FLAGS.version, FLAGS.model_type))
        checkpoint_path = ckpt.model_checkpoint_path
    print(checkpoint_path)

    # build and restore model
    model = model_fn(config, phase='test')
    model.build()
    prob = model.prob

    sess = tf.Session(graph=tf.get_default_graph())
    tf.logging.info('Restore from model %s' %
                    os.path.basename(checkpoint_path))
    saver = tf.train.Saver()
    saver.restore(sess, checkpoint_path)

    quest_ids = []
    result = []

    print('Running inference on split %s...' % TEST_SET)
    for i in range(reader.num_batches):
        if i % 10 == 0:
            update_progress(i / float(reader.num_batches))
        outputs = reader.get_test_batch()
        mc_scores = sess.run(model._logits,
                             feed_dict=model.fill_feed_dict(outputs[:-3]))
        choice_idx = np.argmax(mc_scores, axis=1)

        cands, _qids, image_ids = outputs[-3:]
        for qid, cid, mcs in zip(_qids, choice_idx, cands):
            answer = mcs['cands'][cid]
            assert (mcs['quest_id'] == qid)
            result.append({u'answer': answer, u'question_id': qid})

        quest_ids.append(_qids)

    quest_ids = np.concatenate(quest_ids)

    # save results
    tf.logging.info('Saving results')
    res_file = FLAGS.result_format % (FLAGS.version, TEST_SET)
    json.dump(result, open(res_file, 'w'))
    tf.logging.info('Done!')
    tf.logging.info('#Num eval samples %d' % len(result))
    return res_file, quest_ids