Пример #1
0
    def one_step_grid_search(self, current_step):
        """
        Grid search on n-th pair of QAOA angles, where n=current_step.

        Args:
            current_step (int): specify on which layer do we perform search.

        Returns:
            best_beta, best_gamma (floats): best values of the beta and gamma found. 
        """
        self.qaoa_inst.steps = current_step
        best_beta = None
        best_gamma = None
        best_energy = np.inf

        fixed_betas = self.qaoa_inst.betas
        fixed_gammas = self.qaoa_inst.gammas
        beta_range = np.linspace(0, np.pi, self.grid_size)
        gamma_range = np.linspace(0, 2 * np.pi, self.grid_size)

        vqe = VQE(self.qaoa_inst.minimizer,
                  minimizer_args=self.qaoa_inst.minimizer_args,
                  minimizer_kwargs=self.qaoa_inst.minimizer_kwargs)
        cost_hamiltonian = reduce(lambda x, y: x + y, self.qaoa_inst.cost_ham)
        for beta in beta_range:
            for gamma in gamma_range:
                betas = np.append(fixed_betas, beta)
                gammas = np.append(fixed_gammas, gamma)
                stacked_params = np.hstack((betas, gammas))
                program = self.qaoa_inst.get_parameterized_program()
                energy = vqe.expectation(program(stacked_params),
                                         cost_hamiltonian, self.samples,
                                         self.qaoa_inst.qc)
                print(beta, gamma, end="\r")
                if energy < best_energy:
                    best_energy = energy
                    best_beta = beta
                    best_gamma = gamma

        return best_beta, best_gamma
Пример #2
0
    def simple_grid_search_angles(self, save_data=False):
        """
        Finds optimal angles for QAOA by performing grid search on all the angles.
        This is not recommended for higher values of steps parameter, 
        since it results in grid_size**(2*steps) evaluations.

        Returns:
            best_betas, best_gammas (np.arrays): best values of the betas and gammas found. 

        """
        best_betas = None
        best_gammas = None
        best_energy = np.inf

        # For some reasons np.meshgrid returns columns in order, where values in second
        # grow slower than in the first one. This a fix to it.
        if self.qaoa_inst.steps == 1:
            column_order = [0]
        else:
            column_order = [1, 0] + list(range(2, self.qaoa_inst.steps))

        new_indices = np.argsort(column_order)
        beta_ranges = [np.linspace(0, np.pi, self.grid_size)
                       ] * self.qaoa_inst.steps
        all_betas = np.vstack(np.meshgrid(*beta_ranges)).reshape(
            self.qaoa_inst.steps, -1).T
        all_betas = all_betas[:, column_order]

        gamma_ranges = [np.linspace(0, 2 * np.pi, self.grid_size)
                        ] * self.qaoa_inst.steps
        all_gammas = np.vstack(np.meshgrid(*gamma_ranges)).reshape(
            self.qaoa_inst.steps, -1).T
        all_gammas = all_gammas[:, column_order]

        vqe = VQE(self.qaoa_inst.minimizer,
                  minimizer_args=self.qaoa_inst.minimizer_args,
                  minimizer_kwargs=self.qaoa_inst.minimizer_kwargs)
        cost_hamiltonian = reduce(lambda x, y: x + y, self.qaoa_inst.cost_ham)
        all_energies = []
        data_to_save = []
        if save_data:
            file_name = "_".join(
                [str(self.m), "grid",
                 str(self.grid_size),
                 str(time.time())]) + ".csv"
        for betas in all_betas:
            for gammas in all_gammas:
                stacked_params = np.hstack((betas, gammas))
                program = self.qaoa_inst.get_parameterized_program()
                energy = vqe.expectation(program(stacked_params),
                                         cost_hamiltonian, self.samples,
                                         self.qaoa_inst.qc)
                all_energies.append(energy)
                if self.verbose:
                    print(betas, gammas, energy, end="\r")
                if save_data:
                    data_to_save.append(np.hstack([betas, gammas, energy]))
                if energy < best_energy:
                    best_energy = energy
                    best_betas = betas
                    best_gammas = gammas
                    if self.verbose:
                        print("Lowest energy:", best_energy)
                        print("Angles:", best_betas, best_gammas)
            if save_data:
                np.savetxt(file_name, np.array(data_to_save), delimiter=",")

        if self.visualize:
            if self.qaoa_inst.steps == 1:
                self.ax = plot_energy_landscape(all_betas,
                                                all_gammas,
                                                np.array(all_energies),
                                                log_legend=True)
            else:
                plot_variance_landscape(all_betas, all_gammas,
                                        np.array(all_energies))

        return best_betas, best_gammas