Пример #1
0
# ==== Use Case 2 ====#

vsp.VSPRenew()
errorMgr.PopErrorAndPrint(stdout)

geoms = vsp.FindGeoms()

print("All geoms in Vehicle.")
print(geoms)

# Add Fuse
fuse_id = vsp.AddGeom("FUSELAGE")

# Get XSec Surf ID
xsurf_id = vsp.GetXSecSurf(fuse_id, 0)

# Change Type of First XSec
vsp.ChangeXSecShape(xsurf_id, 0, vsp.XS_SUPER_ELLIPSE)
errorMgr.PopErrorAndPrint(stdout)

# Change Type First XSec Properties
xsec_id = vsp.GetXSec(xsurf_id, 0)
width_id = vsp.GetXSecParm(xsec_id, "Super_Width")
height_id = vsp.GetXSecParm(xsec_id, "Super_Height")
vsp.SetParmVal(width_id, 4.0)
vsp.SetParmVal(height_id, 2.0)

# Copy Cross-Section to Clipboard
vsp.CopyXSec(fuse_id, 0)
Пример #2
0
def vsp_read_fuselage(fuselage_id, units_type='SI', fineness=True):
    """This reads an OpenVSP fuselage geometry and writes it to a SUAVE fuselage format.

	Assumptions:
	1. OpenVSP fuselage is "conventionally shaped" (generally narrow at nose and tail, wider in center). 
	2. Fuselage is designed in VSP as it appears in real life. That is, the VSP model does not rely on
	   superficial elements such as canopies, stacks, or additional fuselages to cover up internal lofting oddities.
	3. This program will NOT account for multiple geometries comprising the fuselage. For example: a wingbox mounted beneath
	   is a separate geometry and will NOT be processed.
	4. Fuselage origin is located at nose. VSP file origin can be located anywhere, preferably at the forward tip
	   of the vehicle or in front (to make all X-coordinates of vehicle positive).
	5. Written for OpenVSP 3.16.1
	
	Source:
	N/A

	Inputs:
	0. Pre-loaded VSP vehicle in memory, via vsp_read.
	1. VSP 10-digit geom ID for fuselage.
	2. Units_type set to 'SI' (default) or 'Imperial'.
	3. Boolean for whether or not to compute fuselage finenesses (default = True).
	4. Uses exterior function get_vsp_areas, in SUAVE/trunk/SUAVE/Input_Output/OpenVSP.
	
	Outputs:
	Writes SUAVE fuselage, with these geometries:           (all defaults are SI, but user may specify Imperial)

		Fuselages.Fuselage.			
			origin                                  [m] in all three dimensions
			width                                   [m]
			lengths.
			  total                                 [m]
			  nose                                  [m]
			  tail                                  [m]
			heights.
			  maximum                               [m]
			  at_quarter_length                     [m]
			  at_three_quarters_length              [m]
			effective_diameter                      [m]
			fineness.nose                           [-] ratio of nose section length to fuselage effective diameter
			fineness.tail                           [-] ratio of tail section length to fuselage effective diameter
			areas.wetted                            [m^2]
			tag                                     <string>
			segment[].   (segments are in ordered container and callable by number)
			  vsp.shape                               [point,circle,round_rect,general_fuse,fuse_file]
			  vsp.xsec_id                             <10 digit string>
			  percent_x_location
			  percent_z_location
			  height
			  width
			  length
			  effective_diameter
			  tag
			vsp.xsec_num                              <integer of fuselage segment quantity>
			vsp.xsec_surf_id                          <10 digit string>

	Properties Used:
	N/A
	"""
    fuselage = SUAVE.Components.Fuselages.Fuselage()

    if units_type == 'SI':
        units_factor = Units.meter * 1.
    else:
        units_factor = Units.foot * 1.

    if vsp.GetGeomName(fuselage_id):
        fuselage.tag = vsp.GetGeomName(fuselage_id)
    else:
        fuselage.tag = 'FuselageGeom'

    fuselage.origin[0][0] = vsp.GetParmVal(fuselage_id, 'X_Location',
                                           'XForm') * units_factor
    fuselage.origin[0][1] = vsp.GetParmVal(fuselage_id, 'Y_Location',
                                           'XForm') * units_factor
    fuselage.origin[0][2] = vsp.GetParmVal(fuselage_id, 'Z_Location',
                                           'XForm') * units_factor

    fuselage.lengths.total = vsp.GetParmVal(fuselage_id, 'Length',
                                            'Design') * units_factor
    fuselage.vsp_data.xsec_surf_id = vsp.GetXSecSurf(
        fuselage_id, 0)  # There is only one XSecSurf in geom.
    fuselage.vsp_data.xsec_num = vsp.GetNumXSec(
        fuselage.vsp_data.xsec_surf_id)  # Number of xsecs in fuselage.

    x_locs = []
    heights = []
    widths = []
    eff_diams = []
    lengths = []

    # -----------------
    # Fuselage segments
    # -----------------

    for ii in range(0, fuselage.vsp_data.xsec_num):
        segment = SUAVE.Components.Fuselages.Segment()
        segment.vsp_data.xsec_id = vsp.GetXSec(fuselage.vsp_data.xsec_surf_id,
                                               ii)  # VSP XSec ID.
        segment.tag = 'segment_' + str(ii)
        segment.percent_x_location = vsp.GetParmVal(
            fuselage_id, 'XLocPercent',
            'XSec_' + str(ii))  # Along fuselage length.
        segment.percent_z_location = vsp.GetParmVal(
            fuselage_id, 'ZLocPercent',
            'XSec_' + str(ii))  # Vertical deviation of fuselage center.
        segment.height = vsp.GetXSecHeight(
            segment.vsp_data.xsec_id) * units_factor
        segment.width = vsp.GetXSecWidth(
            segment.vsp_data.xsec_id) * units_factor
        segment.effective_diameter = (segment.height + segment.width) / 2.

        x_locs.append(segment.percent_x_location
                      )  # Save into arrays for later computation.
        heights.append(segment.height)
        widths.append(segment.width)
        eff_diams.append(segment.effective_diameter)

        if ii != (
                fuselage.vsp_data.xsec_num - 1
        ):  # Segment length: stored as length since previous segment. (First segment will have length 0.0.)
            segment.length = fuselage.lengths.total * (
                fuselage.Segments[ii + 1].percent_x_location -
                segment.percent_x_location) * units_factor
        else:
            segment.length = 0.0
        lengths.append(segment.length)

        shape = vsp.GetXSecShape(segment.vsp_data.xsec_id)
        shape_dict = {
            0: 'point',
            1: 'circle',
            2: 'ellipse',
            3: 'super ellipse',
            4: 'rounded rectangle',
            5: 'general fuse',
            6: 'fuse file'
        }
        segment.vsp_data.shape = shape_dict[shape]

        fuselage.Segments.append(segment)

    fuselage.heights.at_quarter_length = get_fuselage_height(
        fuselage, .25)  # Calls get_fuselage_height function (below).
    fuselage.heights.at_three_quarters_length = get_fuselage_height(
        fuselage, .75)
    fuselage.heights.at_wing_root_quarter_chord = get_fuselage_height(
        fuselage, .4)

    fuselage.heights.maximum = max(heights)  # Max segment height.
    fuselage.width = max(widths)  # Max segment width.
    fuselage.effective_diameter = max(eff_diams)  # Max segment effective diam.

    fuselage.areas.front_projected = np.pi * (
        (fuselage.effective_diameter) / 2)**2

    eff_diam_gradients_fwd = np.array(eff_diams[1:]) - np.array(
        eff_diams[:-1])  # Compute gradients of segment effective diameters.
    eff_diam_gradients_fwd = np.multiply(eff_diam_gradients_fwd, lengths[:-1])

    fuselage = compute_fuselage_fineness(fuselage, x_locs, eff_diams,
                                         eff_diam_gradients_fwd)

    return fuselage
Пример #3
0
def vsp_read_wing(wing_id, units_type='SI'):
    """This reads an OpenVSP wing vehicle geometry and writes it into a SUAVE wing format.

	Assumptions:
	1. OpenVSP wing is divided into segments ("XSecs" in VSP).
	2. Written for OpenVSP 3.16.1

	Source:
	N/A

	Inputs:
	0. Pre-loaded VSP vehicle in memory, via vsp_read.
	1. VSP 10-digit geom ID for wing.
	2. units_type set to 'SI' (default) or 'Imperial'.

	Outputs:
	Writes SUAVE wing object, with these geometries, from VSP:
		Wings.Wing.    (* is all keys)
			origin                                  [m] in all three dimensions
			spans.projected                         [m]
			chords.root                             [m]
			chords.tip                              [m]
			aspect_ratio                            [-]
			sweeps.quarter_chord                    [radians]
			twists.root                             [radians]
			twists.tip                              [radians]
			thickness_to_chord                      [-]
			dihedral                                [radians]
			symmetric                               <boolean>
			tag                                     <string>
			areas.exposed                           [m^2]
			areas.reference                         [m^2]
			areas.wetted                            [m^2]
			Segments.
			  tag                                   <string>
			  twist                                 [radians]
			  percent_span_location                 [-]  .1 is 10%
			  root_chord_percent                    [-]  .1 is 10%
			  dihedral_outboard                     [radians]
			  sweeps.quarter_chord                  [radians]
			  thickness_to_chord                    [-]
			  airfoil                               <NACA 4-series, 6 series, or airfoil file>

	Properties Used:
	N/A
	"""
    if units_type == 'SI':
        units_factor = Units.meter * 1.
    else:
        units_factor = Units.foot * 1.

    wing = SUAVE.Components.Wings.Wing()

    if vsp.GetGeomName(wing_id):
        wing.tag = vsp.GetGeomName(wing_id)
    else:
        wing.tag = 'WingGeom'

    wing.origin[0] = vsp.GetParmVal(wing_id, 'X_Location',
                                    'XForm') * units_factor
    wing.origin[1] = vsp.GetParmVal(wing_id, 'Y_Location',
                                    'XForm') * units_factor
    wing.origin[2] = vsp.GetParmVal(wing_id, 'Z_Location',
                                    'XForm') * units_factor

    sym_planar = vsp.GetParmVal(wing_id, 'Sym_Planar_Flag', 'Sym')
    sym_origin = vsp.GetParmVal(wing_id, 'Sym_Ancestor', 'Sym')

    # Get the initial rotation to get the dihedral angles
    x_rot = vsp.GetParmVal(wing_id, 'X_Rotation', 'XForm')
    # Check if this is vertical tail and get the rotation
    if x_rot >= 70:
        wing.vertical = True

    if sym_planar == 2. and sym_origin == 2.:  #origin at wing, not vehicle
        wing.symmetric == True
    else:
        wing.symmetric == False

    wing.aspect_ratio = vsp.GetParmVal(wing_id, 'TotalAR', 'WingGeom')
    xsec_surf_id = vsp.GetXSecSurf(wing_id,
                                   0)  # This is how VSP stores surfaces.
    segment_num = vsp.GetNumXSec(
        xsec_surf_id
    )  # Get number of wing segments (is one more than the VSP GUI shows).

    total_chord = vsp.GetParmVal(wing_id, 'Root_Chord',
                                 'XSec_1') * units_factor
    total_proj_span = vsp.GetParmVal(wing_id, 'TotalProjectedSpan',
                                     'WingGeom') * units_factor
    span_sum = 0.  # Non-projected.
    proj_span_sum = 0.  # Projected.
    segment_spans = [None] * (segment_num)  # Non-projected.
    segment_dihedral = [None] * (segment_num)
    segment_sweeps_quarter_chord = [None] * (segment_num)

    # Check for wing segment *inside* fuselage, then skip XSec_0 to start at first exposed segment.
    if vsp.GetParmVal(wing_id, 'Root_Chord', 'XSec_0') == 1.:
        start = 1
    else:
        start = 0

    # -------------
    # Wing segments
    # -------------

    # Convert VSP XSecs to SUAVE segments. (Wing segments are defined by outboard sections in VSP, but inboard sections in SUAVE.)
    for i in range(start, segment_num + 1):
        segment = SUAVE.Components.Wings.Segment()
        segment.tag = 'Section_' + str(i)
        thick_cord = vsp.GetParmVal(wing_id, 'ThickChord',
                                    'XSecCurve_' + str(i - 1))
        segment.thickness_to_chord = thick_cord  # Thick_cord stored for use in airfoil, below.
        segment_root_chord = vsp.GetParmVal(wing_id, 'Root_Chord',
                                            'XSec_' + str(i)) * units_factor
        segment.root_chord_percent = segment_root_chord / total_chord
        segment.percent_span_location = proj_span_sum / (total_proj_span / 2)
        segment.twist = vsp.GetParmVal(wing_id, 'Twist',
                                       'XSec_' + str(i - 1)) * Units.deg

        if i == start:
            wing.thickness_to_chord = thick_cord

        if i < segment_num:  # This excludes the tip xsec, but we need a segment in SUAVE to store airfoil.
            sweep = vsp.GetParmVal(wing_id, 'Sweep',
                                   'XSec_' + str(i)) * Units.deg
            sweep_loc = vsp.GetParmVal(wing_id, 'Sweep_Location',
                                       'XSec_' + str(i))
            AR = vsp.GetParmVal(wing_id, 'Aspect', 'XSec_' + str(i))
            taper = vsp.GetParmVal(wing_id, 'Taper', 'XSec_' + str(i))

            segment_sweeps_quarter_chord[i] = convert_sweep(
                sweep, sweep_loc, 0.25, AR, taper)
            segment.sweeps.quarter_chord = segment_sweeps_quarter_chord[
                i]  # Used again, below

            # Used for dihedral computation, below.
            segment_dihedral[i] = vsp.GetParmVal(wing_id, 'Dihedral',
                                                 'XSec_' + str(i)) * Units.deg
            segment.dihedral_outboard = segment_dihedral[i]

            segment_spans[i] = vsp.GetParmVal(wing_id, 'Span',
                                              'XSec_' + str(i)) * units_factor
            proj_span_sum += segment_spans[i] * np.cos(segment_dihedral[i])
            span_sum += segment_spans[i]
        else:
            segment.root_chord_percent = (vsp.GetParmVal(
                wing_id, 'Tip_Chord',
                'XSec_' + str(i - 1))) * units_factor / total_chord

        # XSec airfoil
        jj = i - 1  # Airfoil index i-1 because VSP airfoils and sections are one index off relative to SUAVE.
        xsec_id = str(vsp.GetXSec(xsec_surf_id, jj))
        airfoil = Airfoil()
        if vsp.GetXSecShape(
                xsec_id) == vsp.XS_FOUR_SERIES:  # XSec shape: NACA 4-series
            camber = vsp.GetParmVal(wing_id, 'Camber', 'XSecCurve_' + str(jj))

            if camber == 0.:
                camber_loc = 0.
            else:
                camber_loc = vsp.GetParmVal(wing_id, 'CamberLoc',
                                            'XSecCurve_' + str(jj))

            airfoil.thickness_to_chord = thick_cord
            camber_round = int(np.around(camber * 100))
            camber_loc_round = int(np.around(camber_loc * 10))
            thick_cord_round = int(np.around(thick_cord * 100))
            airfoil.tag = 'NACA ' + str(camber_round) + str(
                camber_loc_round) + str(thick_cord_round)

        elif vsp.GetXSecShape(
                xsec_id) == vsp.XS_SIX_SERIES:  # XSec shape: NACA 6-series
            thick_cord_round = int(np.around(thick_cord * 100))
            a_value = vsp.GetParmVal(wing_id, 'A', 'XSecCurve_' + str(jj))
            ideal_CL = int(
                np.around(
                    vsp.GetParmVal(wing_id, 'IdealCl', 'XSecCurve_' + str(jj))
                    * 10))
            series_vsp = int(
                vsp.GetParmVal(wing_id, 'Series', 'XSecCurve_' + str(jj)))
            series_dict = {
                0: '63',
                1: '64',
                2: '65',
                3: '66',
                4: '67',
                5: '63A',
                6: '64A',
                7: '65A'
            }  # VSP series values.
            series = series_dict[series_vsp]
            airfoil.tag = 'NACA ' + series + str(ideal_CL) + str(
                thick_cord_round) + ' a=' + str(np.around(a_value, 1))

        elif vsp.GetXSecShape(
                xsec_id
        ) == vsp.XS_FILE_AIRFOIL:  # XSec shape: 12 is type AF_FILE
            airfoil.thickness_to_chord = thick_cord
            airfoil.points = vsp.GetAirfoilCoordinates(wing_id,
                                                       float(jj / segment_num))
            # VSP airfoil API calls get coordinates and write files with the final argument being the fraction of segment position, regardless of relative spans.
            # (Write the root airfoil with final arg = 0. Write 4th airfoil of 5 segments with final arg = .8)
            vsp.WriteSeligAirfoil(
                str(wing.tag) + '_airfoil_XSec_' + str(jj) + '.dat', wing_id,
                float(jj / segment_num))
            airfoil.coordinate_file = 'str(wing.tag)' + '_airfoil_XSec_' + str(
                jj) + '.dat'
            airfoil.tag = 'AF_file'

            segment.append_airfoil(airfoil)

        wing.Segments.append(segment)

    # Wing dihedral
    proj_span_sum_alt = 0.
    span_sum_alt = 0.
    sweeps_sum = 0.

    for ii in range(start, segment_num):
        span_sum_alt += segment_spans[ii]
        proj_span_sum_alt += segment_spans[ii] * np.cos(
            segment_dihedral[ii]
        )  # Use projected span to find total wing dihedral.
        sweeps_sum += segment_spans[ii] * np.tan(
            segment_sweeps_quarter_chord[ii])

    wing.dihedral = np.arccos(proj_span_sum_alt / span_sum_alt)
    wing.sweeps.quarter_chord = -np.arctan(
        sweeps_sum / span_sum_alt)  # Minus sign makes it positive sweep.

    # Wing spans
    if wing.symmetric == True:
        wing.spans.projected = 2 * proj_span_sum
    else:
        wing.spans.projected = proj_span_sum

    # Areas
    wing.areas.reference = vsp.GetParmVal(wing_id, 'TotalArea',
                                          'WingGeom') * units_factor**2

    # Chords
    wing.chords.root = vsp.GetParmVal(wing_id, 'Tip_Chord',
                                      'XSec_0') * units_factor
    wing.chords.tip = vsp.GetParmVal(
        wing_id, 'Tip_Chord', 'XSec_' + str(segment_num - 1)) * units_factor
    wing.chords.mean_geometric = wing.areas.reference / wing.spans.projected

    # Twists
    wing.twists.root = vsp.GetParmVal(wing_id, 'Twist', 'XSec_0') * Units.deg
    wing.twists.tip = vsp.GetParmVal(
        wing_id, 'Twist', 'XSec_' + str(segment_num - 1)) * Units.deg

    return wing
Пример #4
0
def write(vehicle, tag):

    # Reset OpenVSP to avoid including a previous vehicle
    try:
        vsp.ClearVSPModel()
    except NameError:
        print 'VSP import failed'
        return -1

    area_tags = dict()  # for wetted area assignment

    # -------------
    # Wings
    # -------------

    for wing in vehicle.wings:

        wing_x = wing.origin[0]
        wing_y = wing.origin[1]
        wing_z = wing.origin[2]
        if wing.symmetric == True:
            span = wing.spans.projected / 2.  # span of one side
        else:
            span = wing.spans.projected
        root_chord = wing.chords.root
        tip_chord = wing.chords.tip
        sweep = wing.sweeps.quarter_chord / Units.deg
        sweep_loc = 0.25
        root_twist = wing.twists.root / Units.deg
        tip_twist = wing.twists.tip / Units.deg
        root_tc = wing.thickness_to_chord
        tip_tc = wing.thickness_to_chord
        dihedral = wing.dihedral / Units.deg

        # Check to see if segments are defined. Get count
        if len(wing.Segments.keys()) > 0:
            n_segments = len(wing.Segments.keys())
        else:
            n_segments = 0

        # Create the wing
        wing_id = vsp.AddGeom("WING")
        vsp.SetGeomName(wing_id, wing.tag)
        area_tags[wing.tag] = ['wings', wing.tag]

        # Make names for each section and insert them into the wing if necessary
        x_secs = []
        x_sec_curves = []
        # n_segments + 2 will create an extra segment if the root segment is
        # included in the list of segments. This is not used and the tag is
        # removed when the segments are checked for this case.
        for i_segs in xrange(0, n_segments + 2):
            x_secs.append('XSec_' + str(i_segs))
            x_sec_curves.append('XSecCurve_' + str(i_segs))

        # Apply the basic characteristics of the wing to root and tip
        if wing.symmetric == False:
            vsp.SetParmVal(wing_id, 'Sym_Planar_Flag', 'Sym', 0)
        if wing.vertical == True:
            vsp.SetParmVal(wing_id, 'X_Rel_Rotation', 'XForm', 90)

        vsp.SetParmVal(wing_id, 'X_Rel_Location', 'XForm', wing_x)
        vsp.SetParmVal(wing_id, 'Y_Rel_Location', 'XForm', wing_y)
        vsp.SetParmVal(wing_id, 'Z_Rel_Location', 'XForm', wing_z)

        # This ensures that the other VSP parameters are driven properly
        vsp.SetDriverGroup(wing_id, 1, vsp.SPAN_WSECT_DRIVER,
                           vsp.ROOTC_WSECT_DRIVER, vsp.TIPC_WSECT_DRIVER)

        # Root chord
        vsp.SetParmVal(wing_id, 'Root_Chord', x_secs[1], root_chord)

        # Sweep of the first section
        vsp.SetParmVal(wing_id, 'Sweep', x_secs[1], sweep)
        vsp.SetParmVal(wing_id, 'Sweep_Location', x_secs[1], sweep_loc)

        # Twists
        vsp.SetParmVal(wing_id, 'Twist', x_secs[0], tip_twist)  # tip
        vsp.SetParmVal(wing_id, 'Twist', x_secs[0], root_twist)  # root

        # Figure out if there is an airfoil provided

        # Airfoils should be in Lednicer format
        # i.e. :
        #
        #EXAMPLE AIRFOIL
        # 3. 3.
        #
        # 0.0 0.0
        # 0.5 0.1
        # 1.0 0.0
        #
        # 0.0 0.0
        # 0.5 -0.1
        # 1.0 0.0

        # Note this will fail silently if airfoil is not in correct format
        # check geometry output

        if n_segments == 0:
            if len(wing.Airfoil) != 0:
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_FILE_AIRFOIL)
                vsp.ChangeXSecShape(xsecsurf, 1, vsp.XS_FILE_AIRFOIL)
                xsec1 = vsp.GetXSec(xsecsurf, 0)
                xsec2 = vsp.GetXSec(xsecsurf, 1)
                vsp.ReadFileAirfoil(xsec1,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.ReadFileAirfoil(xsec2,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.Update()
        else:  # The wing airfoil is still used for the root segment if the first added segment does not begin there
            # This could be combined with above, but is left here for clarity
            if (len(wing.Airfoil) !=
                    0) and (wing.Segments[0].percent_span_location != 0.):
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_FILE_AIRFOIL)
                vsp.ChangeXSecShape(xsecsurf, 1, vsp.XS_FILE_AIRFOIL)
                xsec1 = vsp.GetXSec(xsecsurf, 0)
                xsec2 = vsp.GetXSec(xsecsurf, 1)
                vsp.ReadFileAirfoil(xsec1,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.ReadFileAirfoil(xsec2,
                                    wing.Airfoil['airfoil'].coordinate_file)
                vsp.Update()
            elif len(wing.Segments[0].Airfoil) != 0:
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_FILE_AIRFOIL)
                vsp.ChangeXSecShape(xsecsurf, 1, vsp.XS_FILE_AIRFOIL)
                xsec1 = vsp.GetXSec(xsecsurf, 0)
                xsec2 = vsp.GetXSec(xsecsurf, 1)
                vsp.ReadFileAirfoil(
                    xsec1, wing.Segments[0].Airfoil['airfoil'].coordinate_file)
                vsp.ReadFileAirfoil(
                    xsec2, wing.Segments[0].Airfoil['airfoil'].coordinate_file)
                vsp.Update()

        # Thickness to chords
        vsp.SetParmVal(wing_id, 'ThickChord', 'XSecCurve_0', root_tc)
        vsp.SetParmVal(wing_id, 'ThickChord', 'XSecCurve_1', tip_tc)

        # Dihedral
        vsp.SetParmVal(wing_id, 'Dihedral', x_secs[1], dihedral)

        # Span and tip of the section
        if n_segments > 1:
            local_span = span * wing.Segments[0].percent_span_location
            sec_tip_chord = root_chord * wing.Segments[0].root_chord_percent
            vsp.SetParmVal(wing_id, 'Span', x_secs[1], local_span)
            vsp.SetParmVal(wing_id, 'Tip_Chord', x_secs[1], sec_tip_chord)
        else:
            vsp.SetParmVal(wing_id, 'Span', x_secs[1], span)

        vsp.Update()

        if n_segments > 0:
            if wing.Segments[0].percent_span_location == 0.:
                x_secs[-1] = []  # remove extra section tag (for clarity)
                segment_0_is_root_flag = True
                adjust = 0  # used for indexing
            else:
                segment_0_is_root_flag = False
                adjust = 1
        else:
            adjust = 1

        # Loop for the number of segments left over
        for i_segs in xrange(1, n_segments + 1):

            # Unpack
            dihedral_i = wing.Segments[i_segs -
                                       1].dihedral_outboard / Units.deg
            chord_i = root_chord * wing.Segments[i_segs - 1].root_chord_percent
            twist_i = wing.Segments[i_segs - 1].twist / Units.deg
            sweep_i = wing.Segments[i_segs -
                                    1].sweeps.quarter_chord / Units.deg

            # Calculate the local span
            if i_segs == n_segments:
                span_i = span * (
                    1 - wing.Segments[i_segs - 1].percent_span_location
                ) / np.cos(dihedral_i * Units.deg)
            else:
                span_i = span * (
                    wing.Segments[i_segs].percent_span_location -
                    wing.Segments[i_segs - 1].percent_span_location) / np.cos(
                        dihedral_i * Units.deg)

            # Insert the new wing section with specified airfoil if available
            if len(wing.Segments[i_segs - 1].Airfoil) != 0:
                vsp.InsertXSec(wing_id, i_segs - 1 + adjust,
                               vsp.XS_FILE_AIRFOIL)
                xsecsurf = vsp.GetXSecSurf(wing_id, 0)
                xsec = vsp.GetXSec(xsecsurf, i_segs + adjust)
                vsp.ReadFileAirfoil(
                    xsec, wing.Segments[i_segs -
                                        1].Airfoil['airfoil'].coordinate_file)
            else:
                vsp.InsertXSec(wing_id, i_segs - 1 + adjust,
                               vsp.XS_FOUR_SERIES)

            # Set the parms
            vsp.SetParmVal(wing_id, 'Span', x_secs[i_segs + adjust], span_i)
            vsp.SetParmVal(wing_id, 'Dihedral', x_secs[i_segs + adjust],
                           dihedral_i)
            vsp.SetParmVal(wing_id, 'Sweep', x_secs[i_segs + adjust], sweep_i)
            vsp.SetParmVal(wing_id, 'Sweep_Location', x_secs[i_segs + adjust],
                           sweep_loc)
            vsp.SetParmVal(wing_id, 'Root_Chord', x_secs[i_segs + adjust],
                           chord_i)
            vsp.SetParmVal(wing_id, 'Twist', x_secs[i_segs + adjust], twist_i)
            vsp.SetParmVal(wing_id, 'ThickChord',
                           x_sec_curves[i_segs + adjust], tip_tc)

            vsp.Update()

        vsp.SetParmVal(wing_id, 'Tip_Chord', x_secs[-1 - (1 - adjust)],
                       tip_chord)
        vsp.SetParmVal(wing_id, 'CapUMaxOption', 'EndCap', 2.)
        vsp.SetParmVal(wing_id, 'CapUMaxStrength', 'EndCap', 1.)

        vsp.Update()  # to fix problems with chords not matching up

        if wing.tag == 'main_wing':
            main_wing_id = wing_id

    ## Skeleton code for props and pylons can be found in previous commits (~Dec 2016) if desired
    ## This was a place to start and may not still be functional

    # -------------
    # Engines
    # -------------

    if vehicle.propulsors.has_key('turbofan'):

        print 'Warning: no meshing sources are currently implemented for the nacelle'

        # Unpack
        turbofan = vehicle.propulsors.turbofan
        n_engines = turbofan.number_of_engines
        length = turbofan.engine_length
        width = turbofan.nacelle_diameter
        origins = turbofan.origin
        bpr = turbofan.bypass_ratio

        for ii in xrange(0, int(n_engines)):

            origin = origins[ii]

            x = origin[0]
            y = origin[1]
            z = origin[2]

            nac_id = vsp.AddGeom("FUSELAGE")
            vsp.SetGeomName(nac_id, 'turbofan')

            # Length and overall diameter
            vsp.SetParmVal(nac_id, "Length", "Design", length)
            vsp.SetParmVal(nac_id, 'Abs_Or_Relitive_flag', 'XForm', vsp.ABS)
            vsp.SetParmVal(nac_id, 'OrderPolicy', 'Design', 1.)
            vsp.SetParmVal(nac_id, 'X_Location', 'XForm', x)
            vsp.SetParmVal(nac_id, 'Y_Location', 'XForm', y)
            vsp.SetParmVal(nac_id, 'Z_Location', 'XForm', z)
            vsp.SetParmVal(nac_id, 'Origin', 'XForm', 0.5)
            vsp.SetParmVal(nac_id, 'Z_Rotation', 'XForm', 180.)

            xsecsurf = vsp.GetXSecSurf(nac_id, 0)
            vsp.ChangeXSecShape(xsecsurf, 0, vsp.XS_ELLIPSE)
            vsp.Update()
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_0", width - .2)
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_1", width)
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_2", width)
            vsp.SetParmVal(nac_id, "Ellipse_Width", "XSecCurve_3", width)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_0", width - .2)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_1", width)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_2", width)
            vsp.SetParmVal(nac_id, "Ellipse_Height", "XSecCurve_3", width)

            vsp.Update()

    # -------------
    # Fuselage
    # -------------

    if vehicle.fuselages.has_key('fuselage'):
        # Unpack
        fuselage = vehicle.fuselages.fuselage
        width = fuselage.width
        length = fuselage.lengths.total
        hmax = fuselage.heights.maximum
        height1 = fuselage.heights.at_quarter_length
        height2 = fuselage.heights.at_wing_root_quarter_chord
        height3 = fuselage.heights.at_three_quarters_length
        effdia = fuselage.effective_diameter
        n_fine = fuselage.fineness.nose
        t_fine = fuselage.fineness.tail
        w_ac = wing.aerodynamic_center

        w_origin = vehicle.wings.main_wing.origin
        w_c_4 = vehicle.wings.main_wing.chords.root / 4.

        # Figure out the location x location of each section, 3 sections, end of nose, wing origin, and start of tail

        x1 = n_fine * width / length
        x2 = (w_origin[0] + w_c_4) / length
        x3 = 1 - t_fine * width / length

        fuse_id = vsp.AddGeom("FUSELAGE")
        vsp.SetGeomName(fuse_id, fuselage.tag)
        area_tags[fuselage.tag] = ['fuselages', fuselage.tag]

        if fuselage.has_key('OpenVSP_values'):

            vals = fuselage.OpenVSP_values

            # Nose
            vsp.SetParmVal(fuse_id, "TopLAngle", "XSec_0", vals.nose.top.angle)
            vsp.SetParmVal(fuse_id, "TopLStrength", "XSec_0",
                           vals.nose.top.strength)
            vsp.SetParmVal(fuse_id, "RightLAngle", "XSec_0",
                           vals.nose.side.angle)
            vsp.SetParmVal(fuse_id, "RightLStrength", "XSec_0",
                           vals.nose.side.strength)
            vsp.SetParmVal(fuse_id, "TBSym", "XSec_0", vals.nose.TB_Sym)
            vsp.SetParmVal(fuse_id, "ZLocPercent", "XSec_0", vals.nose.z_pos)

            # Tail
            vsp.SetParmVal(fuse_id, "TopLAngle", "XSec_4", vals.tail.top.angle)
            vsp.SetParmVal(fuse_id, "TopLStrength", "XSec_4",
                           vals.tail.top.strength)
            # Below can be enabled if AllSym (below) is removed
            #vsp.SetParmVal(fuse_id,"RightLAngle","XSec_4",vals.tail.side.angle)
            #vsp.SetParmVal(fuse_id,"RightLStrength","XSec_4",vals.tail.side.strength)
            #vsp.SetParmVal(fuse_id,"TBSym","XSec_4",vals.tail.TB_Sym)
            #vsp.SetParmVal(fuse_id,"BottomLAngle","XSec_4",vals.tail.bottom.angle)
            #vsp.SetParmVal(fuse_id,"BottomLStrength","XSec_4",vals.tail.bottom.strength)
            if vals.tail.has_key('z_pos'):
                tail_z_pos = vals.tail.z_pos
            else:
                tail_z_pos = 0.02

            vsp.SetParmVal(fuse_id, "AllSym", "XSec_4", 1)

        vsp.SetParmVal(fuse_id, "Length", "Design", length)
        vsp.SetParmVal(fuse_id, "Diameter", "Design", width)
        vsp.SetParmVal(fuse_id, "XLocPercent", "XSec_1", x1)
        vsp.SetParmVal(fuse_id, "XLocPercent", "XSec_2", x2)
        vsp.SetParmVal(fuse_id, "XLocPercent", "XSec_3", x3)
        vsp.SetParmVal(fuse_id, "ZLocPercent", "XSec_4", tail_z_pos)
        vsp.SetParmVal(fuse_id, "Ellipse_Width", "XSecCurve_1", width)
        vsp.SetParmVal(fuse_id, "Ellipse_Width", "XSecCurve_2", width)
        vsp.SetParmVal(fuse_id, "Ellipse_Width", "XSecCurve_3", width)
        vsp.SetParmVal(fuse_id, "Ellipse_Height", "XSecCurve_1", height1)
        vsp.SetParmVal(fuse_id, "Ellipse_Height", "XSecCurve_2", height2)
        vsp.SetParmVal(fuse_id, "Ellipse_Height", "XSecCurve_3", height3)

    # Write the vehicle to the file

    vsp.WriteVSPFile(tag + ".vsp3")

    return area_tags