Пример #1
0
def test_pyflann_searches():
    """
    CommandLine:
        python -m vtool.tests.test_pyflann --test-test_pyflann_searches

    Example:
        >>> # ENABLE_DOCTEST
        >>> from vtool.tests.test_pyflann import *  # NOQA
        >>> # build test data
        >>> # execute function
        >>> result = test_pyflann_searches()
        >>> # verify results
        >>> print(result)
    """
    try:
        num_neighbors = 3
        pts = testdata_points(nPts=5743, nDims=2)
        qpts = testdata_points(nPts=7, nDims=2)
        import vtool as vt
        # sample a radius
        radius = vt.L2(pts[0:1], qpts[0:1])[0] * 2 + 1

        flann = pyflann.FLANN()

        print('NN_OnTheFly')
        # build nn_index on the fly
        indices1, dists1 = flann.nn(pts,
                                    qpts,
                                    num_neighbors,
                                    algorithm='hierarchical')
        print(utool.hz_str('indices1, dists1 = ', indices1, dists1))

        _build_params = flann.build_index(pts, algorithm='kmeans')
        del _build_params

        print('NN_Index')
        indices2, dists2 = flann.nn_index(qpts, num_neighbors=num_neighbors)
        print(utool.hz_str('indices2, dists2 = ', indices2, dists2))

        # this can only be called on one query point at a time
        # because the output size is unknown
        print('NN_Radius, radius=%r' % (radius, ))
        indices3, dists3 = flann.nn_radius(pts[0], radius)
        print('indices3 = %r ' % (indices3, ))
        print('dists3 = %r ' % (dists3, ))

        assert np.all(dists3 < radius)
    except Exception as ex:
        utool.printex(ex,
                      key_list=[
                          'query',
                          'query.shape',
                          'pts.shape',
                      ],
                      pad_stdout=True)
        #utool.embed()
        raise
Пример #2
0
def augment_graph_mst(ibs, graph):
    import wbia.plottool as pt

    # spantree_aids1_ = []
    # spantree_aids2_ = []
    # Add edges between all names
    aid_list = list(graph.nodes())
    aug_digraph = graph.copy()
    # Change all weights in initial graph to be small (likely to be part of mst)
    nx.set_edge_attributes(aug_digraph, name='weight', values=0.0001)
    aids1, aids2 = get_name_rowid_edges_from_aids(ibs, aid_list)
    if False:
        # Weight edges in the MST based on tenative distances
        # Get tentative node positions
        initial_pos = pt.get_nx_layout(graph.to_undirected(),
                                       'graphviz')['node_pos']
        # initial_pos = pt.get_nx_layout(graph.to_undirected(), 'agraph')['node_pos']
        edge_pts1 = ut.dict_take(initial_pos, aids1)
        edge_pts2 = ut.dict_take(initial_pos, aids2)
        edge_pts1 = vt.atleast_nd(np.array(edge_pts1, dtype=np.int32), 2)
        edge_pts2 = vt.atleast_nd(np.array(edge_pts2, dtype=np.int32), 2)
        edge_weights = vt.L2(edge_pts1, edge_pts2)
    else:
        edge_weights = [1.0] * len(aids1)
    # Create implicit fully connected (by name) graph
    aug_edges = [(a1, a2, {
        'weight': w
    }) for a1, a2, w in zip(aids1, aids2, edge_weights)]
    aug_digraph.add_edges_from(aug_edges)

    # Determine which edges need to be added to
    # make original graph connected by name
    aug_graph = aug_digraph.to_undirected()
    for cc_sub_graph in connected_component_subgraphs(aug_graph):
        mst_sub_graph = nx.minimum_spanning_tree(cc_sub_graph)
        mst_edges = mst_sub_graph.edges()
        for edge in mst_edges:
            redge = edge[::-1]
            # attr_dict = {'color': pt.DARK_ORANGE[0:3]}
            attr_dict = {'color': pt.BLACK[0:3]}
            if not (graph.has_edge(*edge) or graph.has_edge(*redge)):
                graph.add_edge(*redge, attr_dict=attr_dict)
Пример #3
0
 def true_dist_metric(vecs1, vecs2):
     g1_ = np.roll(vecs1, 1, axis=1)
     dist = vt.L2(g1_, vecs2)
     return dist
Пример #4
0
def test_siamese_performance(model, data, labels, flat_metadata, dataname=''):
    r"""
    CommandLine:
        utprof.py -m ibeis_cnn --tf pz_patchmatch --db liberty --test --weights=liberty:current --arch=siaml2_128 --test
        python -m ibeis_cnn --tf netrun --db liberty --arch=siaml2_128 --test  --ensure
        python -m ibeis_cnn --tf netrun --db liberty --arch=siaml2_128 --test  --ensure --weights=new
        python -m ibeis_cnn --tf netrun --db liberty --arch=siaml2_128 --train --weights=new
        python -m ibeis_cnn --tf netrun --db pzmtest --weights=liberty:current --arch=siaml2_128 --test  # NOQA
        python -m ibeis_cnn --tf netrun --db pzmtest --weights=liberty:current --arch=siaml2_128
    """
    import vtool as vt
    import plottool as pt

    # TODO: save in model.trainind_dpath/diagnostics/figures
    ut.colorprint('\n[siam_perf] Testing Siamese Performance', 'white')
    #epoch_dpath = model.get_epoch_diagnostic_dpath()
    epoch_dpath = model.arch_dpath
    ut.vd(epoch_dpath)

    dataname += ' ' + model.get_history_hashid() + '\n'

    history_text = ut.list_str(model.era_history, newlines=True)

    ut.write_to(ut.unixjoin(epoch_dpath, 'era_history.txt'), history_text)

    #if True:
    #    import matplotlib as mpl
    #    mpl.rcParams['agg.path.chunksize'] = 100000

    #data   = data[::50]
    #labels = labels[::50]
    #from ibeis_cnn import utils
    #data, labels = utils.random_xy_sample(data, labels, 10000, model.data_per_label_input)

    FULL = not ut.get_argflag('--quick')

    fnum_gen = pt.make_fnum_nextgen()

    ut.colorprint('[siam_perf] Show era history', 'white')
    fig = model.show_era_loss(fnum=fnum_gen())
    pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180)

    # hack
    ut.colorprint('[siam_perf] Show weights image', 'white')
    fig = model.show_weights_image(fnum=fnum_gen())
    pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180)
    #model.draw_all_conv_layer_weights(fnum=fnum_gen())
    #model.imwrite_weights(1)
    #model.imwrite_weights(2)

    # Compute each type of score
    ut.colorprint('[siam_perf] Building Scores', 'white')
    test_outputs = model.predict2(model, data)
    network_output = test_outputs['network_output_determ']
    # hack converting network output to distances for non-descriptor networks
    if len(network_output.shape) == 2 and network_output.shape[1] == 1:
        cnn_scores = network_output.T[0]
    elif len(network_output.shape) == 1:
        cnn_scores = network_output
    elif len(network_output.shape) == 2 and network_output.shape[1] > 1:
        assert model.data_per_label_output == 2
        vecs1 = network_output[0::2]
        vecs2 = network_output[1::2]
        cnn_scores = vt.L2(vecs1, vecs2)
    else:
        assert False
    cnn_scores = cnn_scores.astype(np.float64)

    # Segfaults with the data passed in is large (AND MEMMAPPED apparently)
    # Fixed in hesaff implementation
    SIFT = FULL
    if SIFT:
        sift_scores, sift_list = test_sift_patchmatch_scores(data, labels)
        sift_scores = sift_scores.astype(np.float64)

    ut.colorprint('[siam_perf] Learning Encoders', 'white')
    # Learn encoders
    encoder_kw = {
        #'monotonize': False,
        'monotonize': True,
    }
    cnn_encoder = vt.ScoreNormalizer(**encoder_kw)
    cnn_encoder.fit(cnn_scores, labels)

    if SIFT:
        sift_encoder = vt.ScoreNormalizer(**encoder_kw)
        sift_encoder.fit(sift_scores, labels)

    # Visualize
    ut.colorprint('[siam_perf] Visualize Encoders', 'white')
    viz_kw = dict(
        with_scores=False,
        with_postbayes=False,
        with_prebayes=False,
        target_tpr=.95,
    )
    inter_cnn = cnn_encoder.visualize(
        figtitle=dataname + ' CNN scores. #data=' + str(len(data)),
        fnum=fnum_gen(), **viz_kw)
    if SIFT:
        inter_sift = sift_encoder.visualize(
            figtitle=dataname + ' SIFT scores. #data=' + str(len(data)),
            fnum=fnum_gen(), **viz_kw)

    # Save
    pt.save_figure(fig=inter_cnn.fig, dpath=epoch_dpath)
    if SIFT:
        pt.save_figure(fig=inter_sift.fig, dpath=epoch_dpath)

    # Save out examples of hard errors
    #cnn_fp_label_indicies, cnn_fn_label_indicies =
    #cnn_encoder.get_error_indicies(cnn_scores, labels)
    #sift_fp_label_indicies, sift_fn_label_indicies =
    #sift_encoder.get_error_indicies(sift_scores, labels)

    with_patch_examples = FULL
    if with_patch_examples:
        ut.colorprint('[siam_perf] Visualize Confusion Examples', 'white')
        cnn_indicies = cnn_encoder.get_confusion_indicies(cnn_scores, labels)
        if SIFT:
            sift_indicies = sift_encoder.get_confusion_indicies(sift_scores, labels)

        warped_patch1_list, warped_patch2_list = list(zip(*ut.ichunks(data, 2)))
        samp_args = (warped_patch1_list, warped_patch2_list, labels)
        _sample = functools.partial(draw_results.get_patch_sample_img, *samp_args)

        cnn_fp_img = _sample({'fs': cnn_scores}, cnn_indicies.fp)[0]
        cnn_fn_img = _sample({'fs': cnn_scores}, cnn_indicies.fn)[0]
        cnn_tp_img = _sample({'fs': cnn_scores}, cnn_indicies.tp)[0]
        cnn_tn_img = _sample({'fs': cnn_scores}, cnn_indicies.tn)[0]

        if SIFT:
            sift_fp_img = _sample({'fs': sift_scores}, sift_indicies.fp)[0]
            sift_fn_img = _sample({'fs': sift_scores}, sift_indicies.fn)[0]
            sift_tp_img = _sample({'fs': sift_scores}, sift_indicies.tp)[0]
            sift_tn_img = _sample({'fs': sift_scores}, sift_indicies.tn)[0]

        #if ut.show_was_requested():
        #def rectify(arr):
        #    return np.flipud(arr)
        SINGLE_FIG = False
        if SINGLE_FIG:
            def dump_img(img_, lbl, fnum):
                fig, ax = pt.imshow(img_, figtitle=dataname + ' ' + lbl, fnum=fnum)
                pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180)
            dump_img(cnn_fp_img, 'cnn_fp_img', fnum_gen())
            dump_img(cnn_fn_img, 'cnn_fn_img', fnum_gen())
            dump_img(cnn_tp_img, 'cnn_tp_img', fnum_gen())
            dump_img(cnn_tn_img, 'cnn_tn_img', fnum_gen())

            dump_img(sift_fp_img, 'sift_fp_img', fnum_gen())
            dump_img(sift_fn_img, 'sift_fn_img', fnum_gen())
            dump_img(sift_tp_img, 'sift_tp_img', fnum_gen())
            dump_img(sift_tn_img, 'sift_tn_img', fnum_gen())
            #vt.imwrite(dataname + '_' + 'cnn_fp_img.png', (cnn_fp_img))
            #vt.imwrite(dataname + '_' + 'cnn_fn_img.png', (cnn_fn_img))
            #vt.imwrite(dataname + '_' + 'sift_fp_img.png', (sift_fp_img))
            #vt.imwrite(dataname + '_' + 'sift_fn_img.png', (sift_fn_img))
        else:
            print('Drawing TP FP TN FN')
            fnum = fnum_gen()
            pnum_gen = pt.make_pnum_nextgen(4, 2)
            fig = pt.figure(fnum)
            pt.imshow(cnn_fp_img,  title='CNN FP',  fnum=fnum, pnum=pnum_gen())
            pt.imshow(sift_fp_img, title='SIFT FP', fnum=fnum, pnum=pnum_gen())
            pt.imshow(cnn_fn_img,  title='CNN FN',  fnum=fnum, pnum=pnum_gen())
            pt.imshow(sift_fn_img, title='SIFT FN', fnum=fnum, pnum=pnum_gen())
            pt.imshow(cnn_tp_img,  title='CNN TP',  fnum=fnum, pnum=pnum_gen())
            pt.imshow(sift_tp_img, title='SIFT TP', fnum=fnum, pnum=pnum_gen())
            pt.imshow(cnn_tn_img,  title='CNN TN',  fnum=fnum, pnum=pnum_gen())
            pt.imshow(sift_tn_img, title='SIFT TN', fnum=fnum, pnum=pnum_gen())
            pt.set_figtitle(dataname + ' confusions')
            pt.adjust_subplots(left=0, right=1.0, bottom=0., wspace=.01, hspace=.05)
            pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180, figsize=(9, 18))

    with_patch_desc = FULL
    if with_patch_desc:
        ut.colorprint('[siam_perf] Visualize Patch Descriptors', 'white')
        fnum = fnum_gen()
        fig = pt.figure(fnum=fnum, pnum=(1, 1, 1))
        num_rows = 7
        pnum_gen = pt.make_pnum_nextgen(num_rows, 3)
        # Compare actual output descriptors
        for index in ut.random_indexes(len(sift_list), num_rows):
            vec_sift = sift_list[index]
            vec_cnn = network_output[index]
            patch = data[index]
            pt.imshow(patch, fnum=fnum, pnum=pnum_gen())
            pt.plot_descriptor_signature(vec_cnn, 'cnn vec',  fnum=fnum, pnum=pnum_gen())
            pt.plot_sift_signature(vec_sift, 'sift vec',  fnum=fnum, pnum=pnum_gen())
        pt.set_figtitle('Patch Descriptors')
        pt.adjust_subplots(left=0, right=0.95, bottom=0., wspace=.1, hspace=.15)
        pt.save_figure(fig=fig, dpath=epoch_dpath, dpi=180, figsize=(9, 18))
Пример #5
0
def understanding_pseudomax_props(mode=2):
    """
    Function showing some properties of distances between normalized pseudomax vectors

    CommandLine:
        python -m vtool.distance --test-understanding_pseudomax_props

    Example:
        >>> # ENABLE_DOCTEST
        >>> from vtool.distance import *  # NOQA
        >>> for mode in [0, 1, 2, 3]:
        ...     print('+---')
        ...     print('mode = %r' % (mode,))
        ...     result = understanding_pseudomax_props(mode)
        ...     print('L___')
        >>> print(result)
    """
    import vtool as vt
    pseudo_max = 512
    rng = np.random.RandomState(0)
    num = 10
    if mode == 0:
        dim = 2
        p1_01 = (vt.normalize_rows(rng.rand(num, dim)))
        p2_01 = (vt.normalize_rows(rng.rand(num, dim)))
    elif mode == 1:
        p1_01 = vt.dummy.testdata_dummy_sift(num, rng) / pseudo_max
        p2_01 = vt.dummy.testdata_dummy_sift(num, rng) / pseudo_max
    elif mode == 2:
        # Build theoretically maximally distant normalized vectors (type 1)
        dim = 128
        p1_01 = np.zeros((1, dim))
        p2_01 = np.zeros((1, dim))
        p2_01[:, 0::2] = 1
        p1_01[:, 1::2] = 1
        p1_01 = vt.normalize_rows(p1_01)
        p2_01 = vt.normalize_rows(p2_01)
    elif mode == 3:
        # Build theoretically maximally distant vectors (type 2)
        # This mode will clip if cast to uint8, thus failing the test
        dim = 128
        p1_01 = np.zeros((1, dim))
        p2_01 = np.zeros((1, dim))
        p2_01[:, 0] = 1
        p1_01[:, 1:] = 1
        p1_01 = vt.normalize_rows(p1_01)
        p2_01 = vt.normalize_rows(p2_01)
        pass
    print('ndims = %r' % (p1_01.shape[1]))

    p1_01 = p1_01.astype(TEMP_VEC_DTYPE)
    p2_01 = p2_01.astype(TEMP_VEC_DTYPE)

    p1_256 = p1_01 * pseudo_max
    p2_256 = p2_01 * pseudo_max

    dist_sqrd_01 = vt.L2_sqrd(p1_01, p2_01)
    dist_sqrd_256 = vt.L2_sqrd(p1_256, p2_256)

    dist_01 = np.sqrt(dist_sqrd_01)
    dist_256 = np.sqrt(dist_sqrd_256)

    print('dist_sqrd_01  = %s' % (ut.numpy_str(dist_sqrd_01, precision=2), ))
    print('dist_sqrd_256 = %s' % (ut.numpy_str(dist_sqrd_256, precision=2), ))
    print('dist_01       = %s' % (ut.numpy_str(dist_01, precision=2), ))
    print('dist_256      = %s' % (ut.numpy_str(dist_256, precision=2), ))

    print('--')
    print('sqrt(2)       = %f' % (np.sqrt(2)))
    print('--')

    assert np.all(dist_01 == vt.L2(p1_01, p2_01))
    assert np.all(dist_256 == vt.L2(p1_256, p2_256))

    const_sqrd = dist_sqrd_256 / dist_sqrd_01
    const = dist_256 / dist_01

    print('const = %r' % (const[0], ))
    print('const_sqrd = %r' % (const_sqrd[0], ))
    print('1 / const = %r' % (1 / const[0], ))
    print('1 / const_sqrd = %r' % (1 / const_sqrd[0], ))

    assert ut.allsame(const)
    assert ut.allsame(const_sqrd)

    assert np.all(const == np.sqrt(const_sqrd))

    # Assert that distance conversions work
    assert np.all(dist_256 / const == dist_01)
    assert np.all(dist_sqrd_256 / const_sqrd == dist_sqrd_01)
    print('Conversions work')

    print('Maximal L2 distance between any two NON-NEGATIVE L2-NORMALIZED'
          ' vectors should always be sqrt(2)')