def test_padua_val_unordered(self): domain = [0, 1, 0, 1] points = padua_points(20, domain) C0f, _abs_error = padua_fit(points, example_functions, 0) X = [0, 0.5, 1] val = padua_val(X, X, C0f, domain) expected = [7.664205912849228e-01, 3.2621734202884815e-01, 3.587865112678535e-02] assert_array_almost_equal(val, expected, 14)
def test_padua_val_unordered(self): domain = [0, 1, 0, 1] points = padua_points(20, domain) C0f, abs_error = padua_fit(points, example_functions, 0) X = np.array([0, 0.5, 1]) # true_val = example_functions.franke(X, X) val = padua_val(X, X, C0f, domain) expected = [0.76642059128493, 0.32621734202885, 0.03587865112678] assert_array_almost_equal(val, expected, 14) assert_array_almost_equal(abs_error, 0.003897032262116954)
def test_padua_val_grid(self): domain = [0, 1, 0, 1] a, b, c, d = domain points = padua_points(21, domain) C0f, _abs_error = padua_fit(points, example_functions, 0) X1 = np.linspace(a, b, 2) X2 = np.linspace(c, d, 2) val = padua_val(X1, X2, C0f, domain, use_meshgrid=True) expected = [[7.664205912849229e-01, 1.0757071952145181e-01], [2.703371615911344e-01, 3.5734971024838565e-02]] assert_array_almost_equal(val, expected, 14)
def test_padua_val_unordered(self): domain = [0, 1, 0, 1] points = padua_points(20, domain) C0f, _abs_error = padua_fit(points, example_functions, 0) X = [0, 0.5, 1] val = padua_val(X, X, C0f, domain) expected = [ 7.664205912849228e-01, 3.2621734202884815e-01, 3.587865112678535e-02 ] assert_array_almost_equal(val, expected, 14)
def test_padua_val_grid(self): domain = [0, 1, 0, 1] a, b, c, d = domain points = padua_points(21, domain) C0f, abs_error = padua_fit(points, example_functions, 0) X1 = np.linspace(a, b, 2) X2 = np.linspace(c, d, 2) val = padua_val(X1, X2, C0f, domain, use_meshgrid=True) expected = [[0.76642059128493, 0.10757071952145], [0.27033716159114, 0.03573497102484]] assert_array_almost_equal(val, expected, 14) assert_array_almost_equal(abs_error, 0.0022486904061664046)