def test_approx(self): ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99, 101, 96, 97, 102, 107, 113, 116, 113, 110, 98)) parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104, 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)) with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="Ties preclude use of exact statistic.") W, pval = stats.ansari(ramsay, parekh) assert_almost_equal(W,185.5,11) assert_almost_equal(pval,0.18145819972867083,11)
def test_approx(self): ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99, 101, 96, 97, 102, 107, 113, 116, 113, 110, 98)) parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104, 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)) with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', message="Ties preclude use of exact statistic.") W, pval = stats.ansari(ramsay, parekh) assert_almost_equal(W, 185.5, 11) assert_almost_equal(pval, 0.18145819972867083, 11)
def test_exact(self): W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12]) assert_almost_equal(W,10.0,11) assert_almost_equal(pval,0.533333333333333333,7)
def test_small(self): x = [1,2,3,3,4] y = [3,2,6,1,6,1,4,1] W, pval = stats.ansari(x,y) assert_almost_equal(W,23.5,11) assert_almost_equal(pval,0.13499256881897437,11)
def test_exact(self): W, pval = stats.ansari([1, 2, 3, 4], [15, 5, 20, 8, 10, 12]) assert_almost_equal(W, 10.0, 11) assert_almost_equal(pval, 0.533333333333333333, 7)
def test_small(self): x = [1, 2, 3, 3, 4] y = [3, 2, 6, 1, 6, 1, 4, 1] W, pval = stats.ansari(x, y) assert_almost_equal(W, 23.5, 11) assert_almost_equal(pval, 0.13499256881897437, 11)