Пример #1
0
 def test_trimmed1(self):
     # Test that center='trimmed' gives the same result as center='mean'
     # when proportiontocut=0.
     W1, pval1 = stats.levene(g1, g2, g3, center='mean')
     W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
     assert_almost_equal(W1, W2)
     assert_almost_equal(pval1, pval2)
Пример #2
0
 def test_equal_mean_median(self):
     x = np.linspace(-1,1,21)
     np.random.seed(1234)
     x2 = np.random.permutation(x)
     y = x**3
     W1, pval1 = stats.levene(x, y, center='mean')
     W2, pval2 = stats.levene(x2, y, center='median')
     assert_almost_equal(W1, W2)
     assert_almost_equal(pval1, pval2)
 def test_equal_mean_median(self):
     x = np.linspace(-1, 1, 21)
     np.random.seed(1234)
     x2 = np.random.permutation(x)
     y = x**3
     W1, pval1 = stats.levene(x, y, center='mean')
     W2, pval2 = stats.levene(x2, y, center='median')
     assert_almost_equal(W1, W2)
     assert_almost_equal(pval1, pval2)
 def test_trimmed1(self):
     # Test that center='trimmed' gives the same result as center='mean'
     # when proportiontocut=0.
     W1, pval1 = stats.levene(g1, g2, g3, center='mean')
     W2, pval2 = stats.levene(g1,
                              g2,
                              g3,
                              center='trimmed',
                              proportiontocut=0.0)
     assert_almost_equal(W1, W2)
     assert_almost_equal(pval1, pval2)
Пример #5
0
    def test_trimmed2(self):
        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
        np.random.seed(1234)
        x2 = np.random.permutation(x)

        # Use center='trimmed'
        W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
        W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125)
        # Trim the data here, and use center='mean'
        W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
        # Result should be the same.
        assert_almost_equal(W0, W2)
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)
    def test_trimmed2(self):
        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
        np.random.seed(1234)
        x2 = np.random.permutation(x)

        # Use center='trimmed'
        W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
        W1, pval1 = stats.levene(x2,
                                 y,
                                 center='trimmed',
                                 proportiontocut=0.125)
        # Trim the data here, and use center='mean'
        W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
        # Result should be the same.
        assert_almost_equal(W0, W2)
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)
Пример #7
0
 def test_data(self):
     args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
     W, pval = stats.levene(*args)
     assert_almost_equal(W,1.7059176930008939,7)
     assert_almost_equal(pval,0.0990829755522,7)
 def test_data(self):
     args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
     W, pval = stats.levene(*args)
     assert_almost_equal(W, 1.7059176930008939, 7)
     assert_almost_equal(pval, 0.0990829755522, 7)