Пример #1
0
def try_getstr():
    pyrec.rec("1.wav")
    pcm_file = wav2pcm.wav_to_pcm("1.wav")
    # 识别本地文件
    with open(pcm_file, "rb") as fp:
        file_context = fp.read()

    result = client.asr(file_context, 'pcm', 16000, {
        'dev_pid': 1536,
    })
    print(result)
    result = result.get('result', None)
    if result:
        print(result)
    return result
Пример #2
0
def processing(limit, begin):
    i = 0
    print('begin', begin.value)
    while True:
        # 请说出语音指令
        print("\n\n==================================================")
        rec_yuyin = "D:/Python/self_project/luyin/files/test" + str(i) + ".wav"
        #print(rec_yuyin)
        luyin.audio_record(rec_yuyin, 3)
        pcm_file = wav2pcm.wav_to_pcm(rec_yuyin)
        asr_result = shibie.shibie(pcm_file)  # 识别语音指令
        if len(asr_result) != 0:
            print("Identify Result:", asr_result)
            print("Start Control...")
            control.keyboard_control(asr_result, limit, begin)  # 根据识别结果控制键盘
            print("Control End...")
            if asr_result.find("退出") != -1:  # 如果是"退出"指令则结束程序
                break
            time.sleep(0.5)  # 延时1秒
        i = i + 1
def asr_main(audio_data_va):
    pcm_file = wav2pcm.wav_to_pcm(audio_data_va)
    signal = open(pcm_file, "rb").read()
    token = get_access_token()
    ## token = "以上获取token令牌可以保持下来,不用一直获取,一个月有效"
    uuid = "8C-16-45-44-09-E1"  # 机器 MAC 地址
    #print(resp)

    try:
        resp = baidu_asr(signal, uuid, token)  # resp为list格式
        if ',' not in resp:
            res = ''.join(resp)  # 将list格式转化为str
        else:
            res = "None"

    except:
        print("音频质量差")
        res = "None"

    print(res)
    return res
Пример #4
0
def voice_recognize():

    record.rec('test1.wav')  #生成录音

    time_start = time.time()  #计时开始
    pcm_file = wav2pcm.wav_to_pcm('test1.wav')  #将wav转成pcm

    # 识别本地文件
    result = client.asr(get_file_content(pcm_file), 'pcm', 16000, {
        'dev_pid': 1536,
    })
    if (result.get("err_no") == 0):
        time_end = time.time()  #计时结束
        res_str = '识别结果:%s,耗时%.2fs' % (result.get("result")[0],
                                       (time_end - time_start))  #截取结果
        wav2pcm.deletef(pcm_file)  #将此次识别的pcm文件删除

    else:
        res_str = "识别失败"
        wav2pcm.deletef(pcm_file)  #将此次识别的pcm文件删除
    return res_str
Пример #5
0
def main():
    while True:
        client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
        pyrec.rec("1.wav")  # 录音并生成wav文件,使用方式传入文件名
        pcm_file = wav2pcm.wav_to_pcm("1.wav")  # 将wav文件 转换成pcm文件 返回 pcm的文件名
        # 读取文件 , 得到了PCM文件
        with open(pcm_file, 'rb') as fp:
            file_context = fp.read()
        # 识别本地文件
        res = client.asr(file_context, 'pcm', 16000, {
            'dev_pid': 1536,
        })
        # 从字典里面获取"result"的value 列表中第1个元素,就是识别出来的字符串
        res_str = res.get("result")[0]
        print(res_str)
        #识别出来的内容交给图灵机器人来回答
        Q_str = FAQ.answer(res_str, TULING_KEY)
        # 将转换出来的字符串进行语音合成
        synth_file = "synth.mp3"
        synth_context = client.synthesis(Q_str, "zh", 1, {
            "vol": 6,
            "spd": 2,
            "pit": 3,
            "per": 0
        })
        with open(synth_file, "wb") as f:
            f.write(synth_context)
        # 播放合成语音
        pygame.mixer.init()
        pygame.mixer.music.load(synth_file)
        pygame.mixer.music.play()
        count = 0
        while (count < 9):
            csx = pygame.mixer.music.get_busy()
            if csx == 1:
                time.sleep(5)
                count = count + 1
            else:
                count = 10
        pygame.mixer.music.stop()
Пример #6
0
def parse_voice_file(filename):
    cmd_say('开始解析语音文件')

    newFilePath = wav_to_pcm(filename)

    print("Handling file ", filename)

    # 通过百度语音识别API识别本地录制并已转化的语音文件
    resp = client.asr(get_file_content(newFilePath), 'pcm', 16000, {
        'dev_pid': 1536,
    })

    print("AI response:", resp)
    print("")

    result = resp['result']

    cmd_texts = []
    for r in result:
        print(r)
        cmd_texts.append(r)
        cmd_say(u"文件解析的结果是 {}".format(r))

    for text in cmd_texts:
        # We can implement some strategies here
        if '音乐' in text:
            cmd_say("检测到有'音乐'这个关键字,正在打开音乐...")
            os.system("open -a NeteaseMusic")
            time.sleep(2)
            # 播放,需要设置全局快捷键
            keyboard.press_and_release('ctrl+v')
        else:
            if '浏览器' in text:
                cmd_say("检测到有'浏览器'这个关键字,正在打开Chrome...")
                os.system("open -a Google\ Chrome")
                time.sleep(2)
Пример #7
0
def audio2text():
	APP_ID = '11567018'
	API_KEY = 'v8P6XA1I4A2EGnPRQmpt9D99'
	SECRET_KEY = 'llbHhdFrRe2TFugk2RbNyCdx6yjLMjAq'

	client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)

	pyrec.rec("1.wav")
	pcm = wav2pcm.wav_to_pcm("1.wav")


	with open('1.pcm', 'rb') as fp:
	    file_context = fp.read()
	data = client.asr(file_context, 'pcm', 16000, {'dev_pid': 1536})
	if (data[u'err_msg'] == u'success.'):
		
		with open('test.txt','w+') as f:
			
			for i in data[u'result']:
				print i
				f.write(i.encode("utf-8"))
		return True
	else:
		return False
Пример #8
0
#!/usr/bin/python
# -*- coding: utf-8 -*-
import pyrec
import wav2pcm
import baidu_ai
import play_mp3
#import FAQ
import opendb

while 1:

    pyrec.rec("1.wav")

    pcm_file = wav2pcm.wav_to_pcm("1.wav")
    print(pcm_file)

    res_str = baidu_ai.audio_to_text(pcm_file)

    print(res_str)

    #Q_str = FAQ.faq(res_str)

    Q_str = opendb.poetmatch(res_str)

    if Q_str != 0:

        synth_file = baidu_ai.text_to_audio(Q_str)

        #synth_file = baidu_ai.text_to_audio(res_str)

        play_mp3.playmp3(synth_file)
Пример #9
0
#!/usr/bin/python3
import pyrec  # 录音函数文件
import wav2pcm  # wav转换pcm 函数文件
import baidu_ai  # 语音合成函数,语音识别函数 文件
import playmp3  # 播放mp3 函数 文件
import FAQ
import tuling
import sizhi

pyrec.rec("1.wav")  # 录音并生成wav文件,使用方式传入文件名

pcm_file = wav2pcm.wav_to_pcm("1.wav")  # 将wav文件 转换成pcm文件 返回 pcm的文件名

res_str = baidu_ai.audio_to_text(pcm_file)  # 将转换后的pcm音频文件识别成 文字 res_str

ter = sizhi.speak(res_str)
Q_str = str(ter)
synth_file = baidu_ai.text_to_audio(Q_str)
playmp3.play_mp3(synth_file)
Пример #10
0
import luyin
import wav2pcm
import shibie
import control
import time
import os

i=0
while True:
# 请说出语音指令
    print("\n\n==================================================")
    rec_yuyin = "/home/hsj/Documents/test"+str(i)+".wav"
    #print(rec_yuyin)
    luyin.audio_record(rec_yuyin, 3)
    pcm_file = wav2pcm.wav_to_pcm(rec_yuyin)
    asr_result = shibie.shibie(pcm_file) # 识别语音指令
    if len(asr_result) != 0:
        print("Identify Result:", asr_result)
        print("Start Control...")
        control.keyboard_control(asr_result) # 根据识别结果控制键盘
        print("Control End...")
        if asr_result.find("退出") != -1: # 如果是"退出"指令则结束程序
            break;
        time.sleep(1) # 延时1秒
    i=i+1
Пример #11
0
from aip import AipSpeech
import time
import wav2pcm
#import io
#import sys

#sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='utf8')

APP_ID = '18240192'
API_KEY = 'l6olC3AktVQfKUksIh1Z8Dv3'
SECRET_KEY = '76sHQR5cUo9zigr1g7Ka4zkatNaGrNGT'

client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)

pcm_file = wav2pcm.wav_to_pcm("D4_750.wav")


def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()


#识别本地文件
start_time = time.time()
ret = client.asr(get_file_content('F:\\p project\\3.7\\D4_750.wav'), 'pcm',
                 16000, {
                     'dev_pid': 1537,
                 })
used_time = time.time() - start_time
print("used time: {}s".format(round(time.time() - start_time, 2)))
print('ret:{}'.format(ret))