Пример #1
0
    def create_sliced_voxel_grid_2d(self,
                                    sample_name,
                                    source,
                                    image_shape=None):
        """Generates a filtered 2D voxel grid from point cloud data

        Args:
            sample_name: image name to generate stereo pointcloud from
            source: point cloud source - 'stereo', 'lidar', or 'depth'
            image_shape: image dimensions [h, w], only required when
                source is 'lidar' or 'depth'

        Returns:
            voxel_grid_2d: 3d voxel grid from the given image
        """
        img_idx = int(sample_name)
        ground_plane = obj_utils.get_road_plane(img_idx,
                                                self.dataset.planes_dir)

        point_cloud = self.get_point_cloud(source,
                                           img_idx,
                                           image_shape=image_shape)
        filtered_points = self._apply_slice_filter(point_cloud, ground_plane)
        # Create Voxel Grid
        voxel_grid_2d = VoxelGrid2D()
        voxel_grid_2d.voxelize_2d(filtered_points,
                                  self.voxel_size,
                                  extents=self.area_extents,
                                  ground_plane=ground_plane,
                                  create_leaf_layout=True)

        return voxel_grid_2d
Пример #2
0
    def create_sliced_voxel_grid_2d(self,
                                    sample_name,
                                    source,
                                    image_shape=None):
        """Generates a filtered 2D voxel grid from point cloud data

        Args:
            sample_name: image name to generate stereo pointcloud from
            source: point cloud source, e.g. 'lidar'
            image_shape: image dimensions [h, w], only required when
                source is 'lidar' or 'depth'

        Returns:
            voxel_grid_2d: 3d voxel grid from the given image
        """
        img_idx = int(sample_name)
        ground_plane = obj_utils.get_road_plane(img_idx,
                                                self.dataset.planes_dir)

        # 点云->相机->像素(坐标)->图片(保留投影在图片里的点云投影坐标)
        # 返回在图片里的点云三维坐标,坐标在相机坐标系下
        point_cloud = self.get_point_cloud(source,
                                           img_idx,
                                           image_shape=image_shape)
        filtered_points = self._apply_slice_filter(
            point_cloud,
            ground_plane)  #保留在x,y,z范围里并且高度在[height_lo,height_hi]的点云

        # 将point_cloud等投影到图片里,并显示
        if img_idx == 23:
            self._project_and_show(sample_name, point_cloud, "red",
                                   "point_cloud")
            self._project_and_show(sample_name, filtered_points.T, "red",
                                   "filtered_points")

        # Create Voxel Grid
        # 将点云坐标离散化为体素voxel,相当于将空间划分为voxel_size大小的网格,统计在网格里的点云个数,网格坐标voxel_coords只保留一个。
        # 创建体素网,网格内包含点云则用0表示,不包含点云则用-1表示
        voxel_grid_2d = VoxelGrid2D()
        voxel_grid_2d.voxelize_2d(filtered_points,
                                  self.voxel_size,
                                  extents=self.area_extents,
                                  ground_plane=ground_plane,
                                  create_leaf_layout=True)

        return voxel_grid_2d
Пример #3
0
    def test_voxel_grid_2d_extents(self):

        voxel_grid = VoxelGrid2D()

        # Generate random points between xyz [[-40, 40], [-4, 4], [-30, 30]]
        points = (np.random.rand(70000, 3) * [80, 8, 60]) - [40, 4, 0]

        # Test bad extents
        bad_extents = np.array([[-30, 30], [-3, 3], [10, 60]])
        self.assertRaises(ValueError, voxel_grid.voxelize_2d, points, 0.1,
                          bad_extents)

        extents = np.array([[-50, 50], [-5, 5], [0, 70]])
        voxel_grid.voxelize_2d(points, 0.1, extents)

        # Check number of divisions and leaf layout shape are correct and are
        # the same. y-axis shapes should be 1
        self.assertTrue((voxel_grid.num_divisions == [1000, 1, 700]).all())
        self.assertTrue(voxel_grid.leaf_layout_2d.shape == (1000, 1, 700))
Пример #4
0
    def create_sliced_voxel_grid_2d_jhuang(self, ground_plane, point_cloud):
        """Generates a filtered 2D voxel grid from point cloud data

        Args:
            ground_plane:
            point_cloud:

        Returns:
            voxel_grid_2d: 3d voxel grid from the given image
        """
        filtered_points = self._apply_slice_filter(point_cloud, ground_plane)

        # Create Voxel Grid
        voxel_grid_2d = VoxelGrid2D()
        voxel_grid_2d.voxelize_2d(filtered_points,
                                  self.voxel_size,
                                  extents=self.area_extents,
                                  ground_plane=ground_plane,
                                  create_leaf_layout=True)

        return voxel_grid_2d
Пример #5
0
    def test_voxelization_2d(self):

        voxel_grid = VoxelGrid2D()

        # Test with actual data
        voxel_grid.voxelize_2d(self.test_points, 0.1)

        # Test Size variable
        self.assertAlmostEqual(voxel_grid.voxel_size, 0.1)

        # Test Minimum Coordinates
        self.assertTrue((voxel_grid.min_voxel_coord == [-400, 0, 0]).all())

        # Test Maximum Coordinates
        self.assertTrue((voxel_grid.max_voxel_coord == [399, 0, 699]).all())

        # Test Divisions
        self.assertTrue((voxel_grid.num_divisions == [800, 1, 700]).all())

        # Test every entry of out put leafs
        self.assertTrue(
            (voxel_grid.leaf_layout_2d == self.expected_leaf_layout).all())
Пример #6
0
    def test_voxel_2d_coordinate_conversion(self):
        voxel_grid = VoxelGrid2D()

        # Generate random points between xyz [[-40, 40], [-4, 4], [-30, 30]]
        points = (np.random.rand(70000, 3) * [80, 8, 60]) - [40, 4, 0]
        extents = np.array([[-50, 50], [-5, 5], [0, 70]])
        voxel_grid.voxelize_2d(points, 0.1, extents)

        # Left Top Corner, z = 0
        coordinates = np.array([[0, 0]])
        # Map spans from [-500, 500], [0, 700]
        expected = np.array([500, 0])
        self.assertTrue(
            (voxel_grid.map_to_index(coordinates) == expected).all())

        coordinates = np.array([[0, 0]]) + 0.1
        # Increment of 1 grid size
        expected = np.array([501, 1])
        self.assertTrue(
            (voxel_grid.map_to_index(coordinates) == expected).all())

        # Start of Grid
        coordinates = np.array([[-50, 0]])
        expected = np.array([0, 0])
        self.assertTrue(
            (voxel_grid.map_to_index(coordinates) == expected).all())

        # End of Grid
        coordinates = np.array([[50, 70]])
        expected = np.array([1000, 700])
        self.assertTrue(
            (voxel_grid.map_to_index(coordinates) == expected).all())

        # Outside the grid
        coordinates = coordinates + 10
        expected = np.array([1000, 700])
        self.assertTrue(
            (voxel_grid.map_to_index(coordinates) == expected).all())
Пример #7
0
    def generate_bev(self,
                     source,
                     point_cloud,
                     ground_plane,
                     area_extents,
                     voxel_size,
                     output_indices=False):
        """Generates the BEV maps dictionary. One height map is created for
        each slice of the point cloud. One density map is created for
        the whole point cloud.

        Args:
            source: point cloud source
            point_cloud: point cloud (3, N) WZN: already in camera frame
            ground_plane: ground plane coefficients
            area_extents: 3D area extents
                [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
            voxel_size: voxel size in m

        Returns:
            BEV maps dictionary
                height_maps: list of height maps
                density_map: density map
        """

        all_points = np.transpose(point_cloud)

        height_maps = []
        voxel_indices_stack = []
        points_in_voxel_stack = []

        for slice_idx in range(self.num_slices):

            height_lo = self.height_lo + slice_idx * self.height_per_division
            height_hi = height_lo + self.height_per_division

            slice_filter = self.kitti_utils.create_slice_filter(
                point_cloud, area_extents, ground_plane, height_lo, height_hi)

            # Apply slice filter
            slice_points = all_points[slice_filter]

            if len(slice_points) > 1:

                # Create Voxel Grid 2D
                voxel_grid_2d = VoxelGrid2D()
                voxel_grid_2d.voxelize_2d(slice_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False)

                # Remove y values (all 0)
                voxel_indices = voxel_grid_2d.voxel_indices[:, [0, 2]]

            # Create empty BEV images
            height_map = np.zeros((voxel_grid_2d.num_divisions[0],
                                   voxel_grid_2d.num_divisions[2]))

            # Only update pixels where voxels have max height values,
            # and normalize by height of slices
            voxel_grid_2d.heights = voxel_grid_2d.heights - height_lo
            height_map[voxel_indices[:, 0], voxel_indices[:, 1]] = \
                np.asarray(voxel_grid_2d.heights) / self.height_per_division

            height_maps.append(height_map)
            #WZN: added to keep track of all used point clouds
            # output the rotated indices as the map is rotated 90deg
            if output_indices:
                voxel_indices_rot = np.copy(voxel_indices)
                #BEV z axis is reversed, if z=70(max_extent), voxel_indices[:, 1]should be 0 at BEV image.
                voxel_indices_rot[:, 1] = voxel_grid_2d.num_divisions[
                    2] - voxel_indices_rot[:, 1]
                #voxel_indices_rot = voxel_indices_rot[:,[1,0]]
                voxel_indices_stack.append(voxel_indices_rot)
                #only choose one point at each voxel
                points_in_voxel_stack.append(voxel_grid_2d.unique_pts)

        # Rotate height maps 90 degrees
        # (transpose and flip) is faster than np.rot90
        height_maps_out = [
            np.flip(height_maps[map_idx].transpose(), axis=0)
            for map_idx in range(len(height_maps))
        ]

        density_slice_filter = self.kitti_utils.create_slice_filter(
            point_cloud, area_extents, ground_plane, self.height_lo,
            self.height_hi)

        density_points = all_points[density_slice_filter]

        # Create Voxel Grid 2D
        density_voxel_grid_2d = VoxelGrid2D()
        density_voxel_grid_2d.voxelize_2d(density_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False)

        # Generate density map
        density_voxel_indices_2d = \
            density_voxel_grid_2d.voxel_indices[:, [0, 2]]

        density_map = self._create_density_map(
            num_divisions=density_voxel_grid_2d.num_divisions,
            voxel_indices_2d=density_voxel_indices_2d,
            num_pts_per_voxel=density_voxel_grid_2d.num_pts_in_voxel,
            norm_value=self.NORM_VALUES[source])

        bev_maps = dict()
        bev_maps['height_maps'] = height_maps_out
        bev_maps['density_map'] = density_map

        #pdb.set_trace()
        if output_indices:
            return bev_maps, np.vstack(voxel_indices_stack), np.vstack(
                points_in_voxel_stack)
        else:
            return bev_maps
Пример #8
0
    def generate_bev(self, source, point_cloud, ground_plane, area_extents,
                     voxel_size):
        """Generates the BEV maps dictionary. One height map is created for
        each slice of the point cloud. One density map is created for
        the whole point cloud.

        Args:
            source: point cloud source
            point_cloud: point cloud (3, N)
            ground_plane: ground plane coefficients
            area_extents: 3D area extents
                [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
            voxel_size: voxel size in m

        Returns:
            BEV maps dictionary
                height_maps: list of height maps
                density_map: density map
        """

        all_points = np.transpose(point_cloud)

        height_maps = []

        for slice_idx in range(self.num_slices):

            height_lo = self.height_lo + slice_idx * self.height_per_division
            height_hi = height_lo + self.height_per_division

            slice_filter = self.kitti_utils.create_slice_filter(
                point_cloud, area_extents, ground_plane, height_lo, height_hi)

            # Apply slice filter
            slice_points = all_points[slice_filter]

            if len(slice_points) > 1:

                # Create Voxel Grid 2D
                voxel_grid_2d = VoxelGrid2D()
                voxel_grid_2d.voxelize_2d(slice_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False)

                # Remove y values (all 0)
                voxel_indices = voxel_grid_2d.voxel_indices[:, [0, 2]]

            # Create empty BEV images
            height_map = np.zeros((voxel_grid_2d.num_divisions[0],
                                   voxel_grid_2d.num_divisions[2]))

            # Only update pixels where voxels have max height values,
            # and normalize by height of slices
            voxel_grid_2d.heights = voxel_grid_2d.heights - height_lo
            height_map[voxel_indices[:, 0], voxel_indices[:, 1]] = \
                np.asarray(voxel_grid_2d.heights) / self.height_per_division

            height_maps.append(height_map)

        # Rotate height maps 90 degrees
        # (transpose and flip) is faster than np.rot90
        height_maps_out = [
            np.flip(height_maps[map_idx].transpose(), axis=0)
            for map_idx in range(len(height_maps))
        ]

        density_slice_filter = self.kitti_utils.create_slice_filter(
            point_cloud, area_extents, ground_plane, self.height_lo,
            self.height_hi)

        density_points = all_points[density_slice_filter]

        # Create Voxel Grid 2D
        density_voxel_grid_2d = VoxelGrid2D()
        density_voxel_grid_2d.voxelize_2d(density_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False)

        # Generate density map
        density_voxel_indices_2d = \
            density_voxel_grid_2d.voxel_indices[:, [0, 2]]

        density_map = self._create_density_map(
            num_divisions=density_voxel_grid_2d.num_divisions,
            voxel_indices_2d=density_voxel_indices_2d,
            num_pts_per_voxel=density_voxel_grid_2d.num_pts_in_voxel,
            norm_value=self.NORM_VALUES[source])

        bev_maps = dict()
        bev_maps['height_maps'] = height_maps_out
        bev_maps['density_map'] = density_map

        return bev_maps
Пример #9
0
    def generate_bev(self,
                     source,
                     point_cloud,
                     ground_plane,
                     area_extents,
                     voxel_size):
        """Generates the BEV maps dictionary. One height map is created for
        each cluster size in the dataset. One density map is created for
        the whole point cloud.

        Args:
            source: point cloud source, only used for normalization
            point_cloud: point cloud (3, N)
            ground_plane: ground plane coefficients
            area_extents: 3D area extents
                [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
            voxel_size: voxel size in m

        Returns:
            BEV maps dictionary
                height_maps: list of height maps
                density_map: density map
        """

        slice_filter = self.kitti_utils.create_slice_filter(
            point_cloud,
            area_extents,
            ground_plane,
            self.ground_filter_offset,
            self.offset_filter_distance)

        # Reshape points into N x [x, y, z]
        all_points = np.transpose(point_cloud)[slice_filter]

        # Create Voxel Grid 2D
        voxel_grid_2d = VoxelGrid2D()
        voxel_grid_2d.voxelize_2d(
            all_points, voxel_size,
            extents=area_extents,
            ground_plane=ground_plane,
            create_leaf_layout=False)

        # Remove y values (all 0)
        voxel_indices_2d = voxel_grid_2d.voxel_indices[:, [0, 2]]

        all_clusters = np.concatenate(self.kitti_utils.clusters)
        all_std_devs = np.concatenate(self.kitti_utils.std_devs)

        # Create empty BEV images
        height_maps = np.zeros((len(all_clusters),
                                voxel_grid_2d.num_divisions[0],
                                voxel_grid_2d.num_divisions[2]))

        # Get last element of clusters (l, w, h)
        height_clusters = np.vstack(all_clusters)[:, [2]]
        height_std_devs = np.vstack(all_std_devs)[:, [2]]

        height_priors = gaussian_prior(voxel_grid_2d.heights,
                                       height_clusters, height_std_devs,
                                       self.std_dev_multiplier)

        # Only update pixels where voxels have max height values
        height_maps[:, voxel_indices_2d[:, 0], voxel_indices_2d[:, 1]] = \
            np.asarray(height_priors)

        # Rotate images 90 degrees
        # (transpose and flip) is faster than np.rot90
        height_maps_out = [np.flip(height_maps[map_idx].transpose(), axis=0)
                           for map_idx in range(len(height_maps))]

        # Generate density map
        density_map = self._create_density_map(
            num_divisions=voxel_grid_2d.num_divisions,
            voxel_indices_2d=voxel_indices_2d,
            num_pts_per_voxel=voxel_grid_2d.num_pts_in_voxel,
            norm_value=self.NORM_VALUES[source])

        bev_maps = dict()
        bev_maps['height_maps'] = height_maps_out
        bev_maps['density_map'] = density_map

        return bev_maps
Пример #10
0
    def generate_bev(self, source, point_cloud, ground_plane, area_extents,
                     voxel_size):
        """Generates the BEV maps dictionary. Generates specified feature maps for each slice or the whole point cloud.

        Args:
            source: point cloud source
            point_cloud: point cloud (3, N)
            ground_plane: ground plane coefficients
            area_extents: 3D area extents
                [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
            voxel_size: voxel size in m

        Returns:
            BEV maps dictionary
                slice_maps: list of feature maps per slice
                cloud_maps: list of feature maps for the whole point cloud
        """

        all_points = np.transpose(point_cloud)

        slice_maps = []
        cloud_maps = []

        if len(self.slice_maps) > 0:
            for slice_idx in range(self.num_slices):

                height_lo = self.height_lo + slice_idx * self.height_per_division
                height_hi = height_lo + self.height_per_division

                slice_filter = self.kitti_utils.create_slice_filter(
                    point_cloud, area_extents, ground_plane, height_lo,
                    height_hi)

                # Apply slice filter
                slice_points = all_points[slice_filter]

                if len(
                        slice_points
                ) >= 0:  # Should probably apply the fix for empty BEV slices
                    # Create Voxel Grid 2D
                    voxel_grid_2d = VoxelGrid2D()
                    voxel_grid_2d.voxelize_2d(slice_points,
                                              voxel_size,
                                              extents=area_extents,
                                              ground_plane=ground_plane,
                                              create_leaf_layout=False,
                                              maps=self.slice_maps)

                    self.generate_bev_map(voxel_grid_2d, self.slice_maps,
                                          slice_maps, height_lo, height_hi,
                                          area_extents, source)

        if len(self.cloud_maps) > 0:
            cloud_filter = self.kitti_utils.create_slice_filter(
                point_cloud, area_extents, ground_plane, self.height_lo,
                self.height_hi)

            cloud_points = all_points[cloud_filter]

            if len(cloud_points >= 0):
                # Create Voxel Grid 2D
                voxel_grid_2d = VoxelGrid2D()
                voxel_grid_2d.voxelize_2d(cloud_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False,
                                          maps=self.cloud_maps)

                self.generate_bev_map(voxel_grid_2d, self.cloud_maps,
                                      cloud_maps, self.height_lo,
                                      self.height_hi, area_extents, source)

        bev_maps = dict()
        bev_maps['slice_maps'] = slice_maps
        bev_maps['cloud_maps'] = cloud_maps

        return bev_maps
Пример #11
0
    def generate_bev(self, source, point_cloud, ground_plane, area_extents,
                     voxel_size):
        """Generates the BEV maps dictionary. One height map is created for
        each slice of the point cloud. One density map is created for
        the whole point cloud.

        Args:
            source: point cloud source
            point_cloud: point cloud (3, N)
            ground_plane: ground plane coefficients
            area_extents: 3D area extents
                [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
            voxel_size: voxel size in m

        Returns:
            BEV maps dictionary
                height_maps: list of height maps
                density_map: density map
        """

        all_points = np.transpose(point_cloud)

        height_maps = []

        for slice_idx in range(self.num_slices):

            height_lo = self.height_lo + slice_idx * self.height_per_division
            height_hi = height_lo + self.height_per_division

            slice_filter = self.kitti_utils.create_slice_filter(
                point_cloud, area_extents, ground_plane, height_lo, height_hi)

            # Apply slice filter
            slice_points = all_points[slice_filter]

            # ***This fixes bug where if there's no points in a slice script will crash
            # Add a point if there aren't any valid ones
            # This shouldn't change detections significantly
            # TODO This is not the best option, would be better to allow 0 voxels with pts
            if len(slice_points) == 0:
                ground_plane = np.array(ground_plane)
                offset_dist = (height_lo + height_hi) / 2
                offset_plane = ground_plane + [0, 0, 0, -offset_dist]
                new_pt = np.array(
                    [area_extents[0, 1], 0, area_extents[2, 1], 1])
                new_pt_height = np.dot(offset_plane, new_pt.T)
                new_pt[1] = new_pt_height
                slice_points = np.array([new_pt[0:3]])

            # Create Voxel Grid 2D
            voxel_grid_2d = VoxelGrid2D()
            voxel_grid_2d.voxelize_2d(slice_points,
                                      voxel_size,
                                      extents=area_extents,
                                      ground_plane=ground_plane,
                                      create_leaf_layout=False)

            # Remove y values (all 0)
            voxel_indices = voxel_grid_2d.voxel_indices[:, [0, 2]]

            # Create empty BEV images
            height_map = np.zeros((voxel_grid_2d.num_divisions[0],
                                   voxel_grid_2d.num_divisions[2]))

            # Only update pixels where voxels have max height values,
            # and normalize by height of slices
            voxel_grid_2d.heights = voxel_grid_2d.heights - height_lo
            height_map[voxel_indices[:, 0], voxel_indices[:, 1]] = \
                np.asarray(voxel_grid_2d.heights) / self.height_per_division

            height_maps.append(height_map)

        # Rotate height maps 90 degrees
        # (transpose and flip) is faster than np.rot90
        height_maps_out = [
            np.flip(height_maps[map_idx].transpose(), axis=0)
            for map_idx in range(len(height_maps))
        ]

        density_slice_filter = self.kitti_utils.create_slice_filter(
            point_cloud, area_extents, ground_plane, self.height_lo,
            self.height_hi)

        density_points = all_points[density_slice_filter]

        # Create Voxel Grid 2D
        density_voxel_grid_2d = VoxelGrid2D()
        density_voxel_grid_2d.voxelize_2d(density_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False)

        # Generate density map
        density_voxel_indices_2d = \
            density_voxel_grid_2d.voxel_indices[:, [0, 2]]

        density_map = self._create_density_map(
            num_divisions=density_voxel_grid_2d.num_divisions,
            voxel_indices_2d=density_voxel_indices_2d,
            num_pts_per_voxel=density_voxel_grid_2d.num_pts_in_voxel,
            norm_value=self.NORM_VALUES[source])

        bev_maps = dict()
        bev_maps['height_maps'] = height_maps_out
        bev_maps['density_map'] = density_map

        return bev_maps
Пример #12
0
    def generate_bev(self, source, point_cloud, ground_plane, area_extents,
                     voxel_size):
        """Generates the BEV maps dictionary. One height map is created for
        each slice of the point cloud. One density map is created for
        the whole point cloud.

        Args:
            source: point cloud source
            point_cloud: point cloud (3, N)
            ground_plane: ground plane coefficients
            area_extents: 3D area extents
                [[min_x, max_x], [min_y, max_y], [min_z, max_z]]
            voxel_size: voxel size in m

        Returns:
            BEV maps dictionary
                height_maps: list of height maps
                density_map: density map
        """
        all_points = np.transpose(point_cloud)

        occupancy_maps = []
        height_maps = []

        depth_cam_voxel_coord = np.floor(depth_cam_coord / voxel_size).astype(
            np.int32).reshape(-1)

        # Generate height map for each slice
        for slice_idx in range(
                self.num_slices
        ):  # pplp_pedestrian_panoptic.config: num_slices = 1
            height_lo = self.height_lo + slice_idx * self.height_per_division
            height_hi = height_lo + self.height_per_division
            # Get all point cloud within 3D areas and heights (like 3D box)
            slice_filter = self.panoptic_utils.create_slice_filter(
                point_cloud,
                area_extents,  # area_extents: [-3.99, 3.99, -5.0, 3.0, 0.0, 6.995]
                ground_plane,
                height_lo,  # -5.00 (in y direction)
                height_hi)  # 2.00

            # Apply slice filter
            slice_points = all_points[slice_filter]

            # print('bev_panoptic_slices.py :: slice_points = ', slice_points)
            # Create Voxel Grid 2D
            voxel_grid_2d = VoxelGrid2D()
            voxel_grid_2d.voxelize_2d(
                slice_points,
                voxel_size,  # voxel_size: 0.01
                extents=area_extents,
                ground_plane=ground_plane,
                create_leaf_layout=False)

            # Remove y values (all 0)
            # voxel_indices all positive
            voxel_indices = voxel_grid_2d.voxel_indices[:, [
                0, 2
            ]]  # voxel_indices: unique indexes - only 1 point is chosen to be occupied in one voxel

            # Bring cam to new origin
            depth_cam_index = (depth_cam_voxel_coord -
                               voxel_grid_2d.min_voxel_coord).astype(int)
            color_cam_index = (np.array([0, 0, 0]) / voxel_size -
                               voxel_grid_2d.min_voxel_coord).astype(int)

            # Create empty BEV images
            height_map = np.zeros((voxel_grid_2d.num_divisions[0],
                                   voxel_grid_2d.num_divisions[2]))

            # Only update pixels where voxels have max height values,
            # and normalize by height of slices
            voxel_grid_2d.heights = voxel_grid_2d.heights - height_lo
            height_map[voxel_indices[:, 0], voxel_indices[:, 1]] = \
                np.asarray(voxel_grid_2d.heights) / self.height_per_division

            height_maps.append(height_map)

            # Create empty BEV occupancy map
            occupancy_map = np.zeros((voxel_grid_2d.num_divisions[0],
                                      voxel_grid_2d.num_divisions[2]))

            fov_pt_right_x = area_extents[0][1]
            fov_pt_right_z = fov_pt_right_x / math.tan(fovx / 2)

            fov_pt_left_x = -fov_pt_right_x
            fov_pt_left_z = fov_pt_right_z

            fov_pt_right = np.array([fov_pt_right_x, 0, fov_pt_right_z])
            fov_pt_left = np.array([fov_pt_left_x, 0, fov_pt_left_z])

            # print(depth_cam_index)

            fov_pt_right_index = (fov_pt_right / voxel_size -
                                  voxel_grid_2d.min_voxel_coord).astype(int)
            pts_on_fov_right_line = bresenham_line.supercover_line(
                (color_cam_index[0], color_cam_index[1]),
                (fov_pt_right_index[0], fov_pt_right_index[2]),
                occupancy_map.shape[0], occupancy_map.shape[1])
            pts_on_fov_right_line_x, pts_on_fov_right_line_y = zip(
                *pts_on_fov_right_line)
            occupancy_map[list(pts_on_fov_right_line_x),
                          list(pts_on_fov_right_line_y)] = -1

            fov_pt_left_index = (fov_pt_left / voxel_size -
                                 voxel_grid_2d.min_voxel_coord).astype(int)
            pts_on_fov_left_line = bresenham_line.supercover_line(
                (color_cam_index[0], color_cam_index[1]),
                (fov_pt_left_index[0], fov_pt_left_index[2]),
                occupancy_map.shape[0], occupancy_map.shape[1])
            pts_on_fov_left_line_x, pts_on_fov_left_line_y = zip(
                *pts_on_fov_left_line)
            occupancy_map[list(pts_on_fov_left_line_x),
                          list(pts_on_fov_left_line_y)] = -1

            # Set the occluded points behind pedestrians

            for pt in range(len(voxel_indices)):
                # TODO: fix. It should be depth_cam_index
                pts_on_line = bresenham_line.supercover_line(
                    (color_cam_index[0], color_cam_index[2]),
                    (voxel_indices[pt, 0], voxel_indices[pt, 1]),
                    occupancy_map.shape[0], occupancy_map.shape[1])
                ptcloud_index = pts_on_line.index(
                    (voxel_indices[pt, 0], voxel_indices[pt, 1]))
                occluded_pts = pts_on_line[ptcloud_index + 1:]
                if len(occluded_pts) == 0: continue
                occluded_xs, occluded_ys = zip(*occluded_pts)
                occupancy_map[list(occluded_xs), list(occluded_ys)] = -1

            # np.savetxt("/home/trinhle/fcav-projects/Panoptic/PPLP/pplp/core/bev_generators/height_maps_ogm/height_map_original.txt", occupancy_map)

            for (xl, yl) in pts_on_fov_left_line:
                for x in range(xl):
                    occupancy_map[x, yl] = -1

            for (xr, yr) in pts_on_fov_right_line:
                for y in range(yr):
                    occupancy_map[xr, y] = -1
            occupancy_map[voxel_indices[:, 0], voxel_indices[:, 1]] = 1
            occupancy_maps.append(occupancy_map)
            # np.savetxt("/home/trinhle/fcav-projects/Panoptic/PPLP/pplp/core/bev_generators/height_maps_ogm/height_map_completed_{}.txt".format(num), occupancy_map)

        # Rotate occupancy and height maps 90 degrees
        # (transpose and flip) is faster than np.rot90
        height_maps_out = [
            np.flip(height_maps[map_idx].transpose(), axis=0)
            for map_idx in range(len(height_maps))
        ]
        occupancy_maps_out = [
            np.flip(occupancy_maps[map_idx].transpose(), axis=0)
            for map_idx in range(len(occupancy_maps))
        ]
        # global viz_idx
        # np.savetxt("/home/trinhle/fcav-projects/Panoptic/PPLP/pplp/core/bev_generators/height_maps_ogm/height_map_rotated_{0:04d}.txt".format(viz_idx), occupancy_maps_out[0])
        # viz_idx += 1

        density_slice_filter = self.panoptic_utils.create_slice_filter(
            point_cloud, area_extents, ground_plane, self.height_lo,
            self.height_hi)

        density_points = all_points[density_slice_filter]

        # Create Voxel Grid 2D
        density_voxel_grid_2d = VoxelGrid2D()
        density_voxel_grid_2d.voxelize_2d(density_points,
                                          voxel_size,
                                          extents=area_extents,
                                          ground_plane=ground_plane,
                                          create_leaf_layout=False)

        # Generate density map
        density_voxel_indices_2d = \
            density_voxel_grid_2d.voxel_indices[:, [0, 2]]

        density_map = self._create_density_map(
            num_divisions=density_voxel_grid_2d.num_divisions,
            voxel_indices_2d=density_voxel_indices_2d,
            num_pts_per_voxel=density_voxel_grid_2d.num_pts_in_voxel,
            norm_value=self.NORM_VALUES[source])

        bev_maps = dict()
        bev_maps['height_maps'] = height_maps_out
        bev_maps['occupancy_maps'] = occupancy_maps_out
        bev_maps['density_map'] = density_map

        return bev_maps