def test_assert_different_length_batch_generation():
    # prepare batch
    batch = 4
    length = 32
    x = np.random.randint(0, 256, size=(batch, 1))
    h = np.random.randn(batch, 28, length)
    length_list = sorted(
        list(np.random.randint(length // 2, length - 1, batch)))

    with torch.no_grad():
        net = WaveNet(256, 28, 4, 4, 10, 3, 2)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        for x_, h_, length in zip(x, h, length_list):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            gen1_list += [gen1]

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen2_list = net.batch_fast_generate(batch_x, batch_h, length_list, 1,
                                            "argmax")

        # assertion
        for gen1, gen2 in zip(gen1_list, gen2_list):
            np.testing.assert_array_equal(gen1, gen2)
Пример #2
0
def test_generate():
    batch = 2
    x = np.random.randint(0, 256, size=(batch, 1))
    h = np.random.randn(batch, 28, 10)
    length = h.shape[-1] - 1
    with torch.no_grad():
        net = WaveNet(256, 28, 4, 4, 10, 3, 2)
        net.apply(initialize)
        net.eval()
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            net.generate(batch_x, batch_h, length, 1, "sampling")
            net.fast_generate(batch_x, batch_h, length, 1, "sampling")
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        net.batch_fast_generate(batch_x, batch_h, [length] * batch, 1, "sampling")
Пример #3
0
    def gpu_decode(feat_list, gpu):
        # set default gpu and do not track gradient
        torch.cuda.set_device(gpu)
        torch.set_grad_enabled(False)

        # define model and load parameters
        if config.use_upsampling_layer:
            upsampling_factor = config.upsampling_factor
        else:
            upsampling_factor = 0
        model = WaveNet(n_quantize=config.n_quantize,
                        n_aux=config.n_aux,
                        n_resch=config.n_resch,
                        n_skipch=config.n_skipch,
                        dilation_depth=config.dilation_depth,
                        dilation_repeat=config.dilation_repeat,
                        kernel_size=config.kernel_size,
                        upsampling_factor=upsampling_factor)
        model.load_state_dict(
            torch.load(args.checkpoint,
                       map_location=lambda storage, loc: storage)["model"])
        model.eval()
        model.cuda()

        # define generator
        generator = decode_generator(
            feat_list,
            batch_size=args.batch_size,
            feature_type=config.feature_type,
            wav_transform=wav_transform,
            feat_transform=feat_transform,
            upsampling_factor=config.upsampling_factor,
            use_upsampling_layer=config.use_upsampling_layer,
            use_speaker_code=config.use_speaker_code)

        # decode
        if args.batch_size > 1:
            for feat_ids, (batch_x, batch_h, n_samples_list) in generator:
                logging.info("decoding start")
                samples_list = model.batch_fast_generate(
                    batch_x, batch_h, n_samples_list, args.intervals)
                for feat_id, samples in zip(feat_ids, samples_list):
                    wav = decode_mu_law(samples, config.n_quantize)
                    sf.write(args.outdir + "/" + feat_id + ".wav", wav,
                             args.fs, "PCM_16")
                    logging.info("wrote %s.wav in %s." %
                                 (feat_id, args.outdir))
        else:
            for feat_id, (x, h, n_samples) in generator:
                logging.info("decoding %s (length = %d)" %
                             (feat_id, n_samples))
                samples = model.fast_generate(x, h, n_samples, args.intervals)
                wav = decode_mu_law(samples, config.n_quantize)
                sf.write(args.outdir + "/" + feat_id + ".wav", wav, args.fs,
                         "PCM_16")
                logging.info("wrote %s.wav in %s." % (feat_id, args.outdir))
Пример #4
0
def main():
    """RUN DECODING."""
    parser = argparse.ArgumentParser()
    # decode setting
    parser.add_argument("--seed_waveforms",
                        required=True,
                        type=str,
                        help="directory or list of wav files")
    parser.add_argument("--checkpoint",
                        required=True,
                        type=str,
                        help="model file")
    parser.add_argument("--outdir",
                        required=True,
                        type=str,
                        help="directory to save generated samples")
    parser.add_argument("--config",
                        default=None,
                        type=str,
                        help="configure file")
    parser.add_argument("--fs", default=16000, type=int, help="sampling rate")
    parser.add_argument("--batch_size",
                        default=1,
                        type=int,
                        help="number of batches to decode of batch_length")
    parser.add_argument("--speaker_code", type=int, help="speaker code")
    # other setting
    parser.add_argument("--intervals",
                        default=1000,
                        type=int,
                        help="log interval")
    parser.add_argument("--seed", default=1, type=int, help="seed number")
    parser.add_argument("--verbose", default=1, type=int, help="log level")
    args = parser.parse_args()

    # set log level
    if args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S')
    elif args.verbose > 1:
        logging.basicConfig(
            level=logging.DEBUG,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S')
    else:
        logging.basicConfig(
            level=logging.WARNING,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S')
        logging.warning("logging is disabled.")

    # show arguments
    for key, value in vars(args).items():
        logging.info("%s = %s" % (key, str(value)))

    # check arguments
    if args.config is None:
        args.config = os.path.dirname(args.checkpoint) + "/model.conf"
    if not os.path.exists(args.config):
        raise FileNotFoundError("config file is missing (%s)." % (args.config))

    # check directory existence
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    if os.path.isdir(args.seed_waveforms):
        filenames = sorted(
            find_files(args.seed_waveforms, "*.wav", use_dir_name=False))
        wav_list = [
            args.seed_waveforms + "/" + filename for filename in filenames
        ]
    elif os.path.isfile(args.seed_waveforms):
        wav_list = read_txt(args.seed_waveforms)
    else:
        logging.error("--seed_waveforms should be directory or list.")
        sys.exit(1)

    # if speaker code is specified then filter out all other speakers if files conform to wave set pattern
    if not args.speaker_code is None:
        try:
            wav_list = [
                file for file in wav_list
                if parse_wave_file_name(file)[1] == args.speaker_code
            ]
        except ValueError:
            # files not in wave set format, then original list will be kept
            pass

    # fix seed
    os.environ['PYTHONHASHSEED'] = str(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # fix slow computation of dilated conv
    # https://github.com/pytorch/pytorch/issues/15054#issuecomment-450191923
    torch.backends.cudnn.benchmark = True

    # load config
    config = torch.load(args.config)

    wav_transform = transforms.Compose(
        [lambda x: encode_mu_law(x, config.n_quantize)])

    # set default gpu and do not track gradient
    torch.set_grad_enabled(False)

    # define model and load parameters
    model = WaveNet(n_quantize=config.n_quantize,
                    n_aux=1,
                    n_resch=config.n_resch,
                    n_skipch=config.n_skipch,
                    dilation_depth=config.dilation_depth,
                    dilation_repeat=config.dilation_repeat,
                    kernel_size=config.kernel_size)

    checkpoint = torch.load(args.checkpoint,
                            map_location=lambda storage, loc: storage)
    model.load_state_dict(checkpoint["model"])
    model.eval()
    if torch.cuda.is_available():
        model.cuda()

    # extract train iterations
    train_iterations = checkpoint["iterations"]

    # choose seed sample
    wav_id = np.random.randint(0, high=len(wav_list))
    wav_file = wav_list[wav_id]
    seed_x, _rate = sf.read(wav_file, dtype=np.float32)
    assert args.fs == _rate, f"expected sample rate is {args.fs}, {wav_file} is {_rate}"
    tot_sample_length = config.batch_length + model.receptive_field
    max_sample_id = seed_x.shape[0] - tot_sample_length
    assert max_sample_id >= 0
    sample_id = np.random.randint(0, max_sample_id)
    seed_sample = seed_x[sample_id:sample_id + tot_sample_length]

    # take code from filename if none
    speaker_code = parse_wave_file_name(
        wav_file)[1] if args.speaker_code is None else args.speaker_code

    # log decoding info
    output_fn_info = f"I{train_iterations}-R{args.seed}-S{speaker_code}-W{Path(wav_file).stem}"
    length_sec = args.batch_size * config.batch_length / args.fs
    logging.info(
        f"generating {args.batch_size} batches of {config.batch_length} samples = {length_sec} seconds"
        f" into {output_fn_info} set")

    # write seed sample
    sf.write(args.outdir + f"/seed_sample-{output_fn_info}.wav", seed_sample,
             args.fs, "PCM_16")
    logging.info("wrote seed_sample.wav in %s." % args.outdir)

    # decode
    new_samples = args.batch_size * config.batch_length
    x, h = decode_from_wav(seed_sample,
                           new_samples,
                           wav_transform=wav_transform,
                           speaker_code=speaker_code)

    def save_samples(samples, file_name):
        wav_data = decode_mu_law(samples, config.n_quantize)
        sf.write(file_name, wav_data, args.fs, "PCM_16")

    def progress_callback(samples, no_samples, elapsed):
        save_samples(samples,
                     args.outdir + "/" + f"decoded.t.all-{output_fn_info}.wav")
        save_samples(samples[-no_samples:],
                     args.outdir + "/" + f"decoded.t.new-{output_fn_info}.wav")

    logging.info("decoding (length = %d)" % h.shape[2])
    samples = model.fast_generate(x,
                                  h,
                                  new_samples,
                                  args.intervals,
                                  callback=progress_callback)
    # samples = model.generate(x, h, new_samples, args.intervals)
    logging.info(f"decoded {len(seed_sample)}")
    save_samples(samples, args.outdir + "/" + f"decoded-{output_fn_info}.wav")
    logging.info("wrote decoded.wav in %s." % args.outdir)
def test_assert_fast_generation():
    # get batch
    batch = 2
    x = np.random.randint(0, 256, size=(batch, 1))
    h = np.random.randn(batch, 28, 32)
    length = h.shape[-1] - 1

    with torch.no_grad():
        # --------------------------------------------------------
        # define model without upsampling and with kernel size = 2
        # --------------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 2)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)

        # --------------------------------------------------------
        # define model without upsampling and with kernel size = 3
        # --------------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 3)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)

        # get batch
        batch = 2
        upsampling_factor = 10
        x = np.random.randint(0, 256, size=(batch, 1))
        h = np.random.randn(batch, 28, 3)
        length = h.shape[-1] * upsampling_factor - 1

        # -----------------------------------------------------
        # define model with upsampling and with kernel size = 2
        # -----------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 2, upsampling_factor)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)

        # -----------------------------------------------------
        # define model with upsampling and with kernel size = 3
        # -----------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 2, upsampling_factor)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)