Пример #1
0
class TestSkeletonSubmodel(unittest.TestCase):

    def setUp(self):
        warnings.simplefilter("ignore")
        self.MODEL_FILENAME = os.path.join(os.path.dirname(__file__), 'fixtures',
                                           'test_submodel_no_shared_species.xlsx')
        self.model = Reader().run(self.MODEL_FILENAME)[Model][0]
        prepare_model(self.model)

    def make_sim_w_skeleton_submodel(self, lang_submodel, behavior):
        self.simulator = SimulationEngine()
        # concatenate tuples in fn call for Py 2.7: see https://stackoverflow.com/a/12830036
        skeleton_submodel = SkeletonSubmodel(
            *(make_dynamic_submodel_params(self.model, lang_submodel) + (behavior,)))
        self.simulator.add_object(skeleton_submodel)
        self.simulator.initialize()
        return skeleton_submodel

    def test_skeleton_submodel(self):
        behavior = {SkeletonSubmodel.INTER_REACTION_TIME: 2}
        lang_submodel = self.model.get_submodels()[0]
        for conc in self.model.distribution_init_concentrations:
            conc.std = 0

        time_max = 100
        skeleton_submodel = self.make_sim_w_skeleton_submodel(lang_submodel, behavior)
        self.assertEqual(self.simulator.simulate(time_max),
                         time_max / behavior[SkeletonSubmodel.INTER_REACTION_TIME])

        behavior = {SkeletonSubmodel.INTER_REACTION_TIME: 2,
                    SkeletonSubmodel.REACTION_TO_EXECUTE: 0}    # reaction #0 makes one more 'species_1[c]'
        skeleton_submodel = self.make_sim_w_skeleton_submodel(lang_submodel, behavior)
        interval = 10
        pop_before = skeleton_submodel.local_species_population.read_one(0, 'species_1[c]')
        for time_max in range(interval, 5 * interval, interval):
            self.simulator.simulate(time_max)
            pop_after = skeleton_submodel.local_species_population.read_one(time_max, 'species_1[c]')
            delta = pop_after - pop_before
            self.assertEqual(delta, interval / behavior[SkeletonSubmodel.INTER_REACTION_TIME])
            pop_before = pop_after
Пример #2
0
class TestMultialgorithmSimulationStatically(unittest.TestCase):

    MODEL_FILENAME = os.path.join(os.path.dirname(__file__), 'fixtures', 'test_model.xlsx')

    def setUp(self):
        # read and initialize a model
        self.model = Reader().run(self.MODEL_FILENAME, ignore_extra_models=True)[Model][0]
        for conc in self.model.distribution_init_concentrations:
            conc.std = 0.
        PrepForWcSimTransform().run(self.model)
        de_simulation_config = SimulationConfig(time_max=10)
        self.wc_sim_config = WCSimulationConfig(de_simulation_config, dfba_time_step=1)
        self.multialgorithm_simulation = MultialgorithmSimulation(self.model, self.wc_sim_config)
        self.test_dir = tempfile.mkdtemp()
        self.results_dir = tempfile.mkdtemp(dir=self.test_dir)

    def tearDown(self):
        shutil.rmtree(self.test_dir)

    def test_init(self):
        self.model.submodels = []
        with self.assertRaises(MultialgorithmError):
            MultialgorithmSimulation(self.model, self.wc_sim_config)

    def test_prepare_skipped_submodels(self):
        multialgorithm_simulation = MultialgorithmSimulation(self.model, self.wc_sim_config)
        self.assertEqual(multialgorithm_simulation.skipped_submodels(), set())
        submodels_to_skip = ['submodel_1']
        self.wc_sim_config.submodels_to_skip = submodels_to_skip
        multialgorithm_simulation = MultialgorithmSimulation(self.model, self.wc_sim_config)
        self.assertEqual(multialgorithm_simulation.skipped_submodels(), set(submodels_to_skip))

        submodels_to_skip = ['no_such_submodel']
        self.wc_sim_config.submodels_to_skip = submodels_to_skip
        with self.assertRaisesRegex(MultialgorithmError,
                                    "'submodels_to_skip' contains submodels that aren't in the model:"):
            MultialgorithmSimulation(self.model, self.wc_sim_config)

    def test_molecular_weights_for_species(self):
        multi_alg_sim = self.multialgorithm_simulation
        expected = {
            'species_6[c]': float('nan'),
            'H2O[c]': 18.0152
        }
        actual = multi_alg_sim.molecular_weights_for_species(set(expected.keys()))
        self.assertEqual(actual['H2O[c]'], expected['H2O[c]'])
        self.assertTrue(np.isnan(actual['species_6[c]']))

        # add a species_type without a structure
        species_type_wo_structure = self.model.species_types.create(
            id='st_wo_structure',
            name='st_wo_structure')
        cellular_compartment = self.model.compartments.get(**{'id': 'c'})[0]
        species_wo_structure = self.model.species.create(
            species_type=species_type_wo_structure,
            compartment=cellular_compartment)
        species_wo_structure.id = species_wo_structure.gen_id()

        actual = multi_alg_sim.molecular_weights_for_species([species_wo_structure.id])
        self.assertTrue(np.isnan(actual[species_wo_structure.id]))

        # test obtain weights for all species
        actual = multi_alg_sim.molecular_weights_for_species()
        self.assertEqual(actual['H2O[c]'], expected['H2O[c]'])
        self.assertTrue(np.isnan(actual['species_6[c]']))
        self.assertEqual(len(actual), len(self.model.get_species()))

    def test_create_dynamic_compartments(self):
        self.multialgorithm_simulation.create_dynamic_compartments()
        self.assertEqual(set(['c', 'e']), set(self.multialgorithm_simulation.temp_dynamic_compartments))
        for id, dynamic_compartment in self.multialgorithm_simulation.temp_dynamic_compartments.items():
            self.assertEqual(id, dynamic_compartment.id)
            self.assertTrue(0 < dynamic_compartment.init_density)

    def test_prepare_dynamic_compartments(self):
        self.multialgorithm_simulation.create_dynamic_compartments()
        self.multialgorithm_simulation.init_species_pop_from_distribution()
        self.multialgorithm_simulation.local_species_population = \
            self.multialgorithm_simulation.make_local_species_population(retain_history=False)
        self.multialgorithm_simulation.prepare_dynamic_compartments()
        for dynamic_compartment in self.multialgorithm_simulation.temp_dynamic_compartments.values():
            self.assertTrue(dynamic_compartment._initialized())
            self.assertTrue(0 < dynamic_compartment.accounted_mass())
            self.assertTrue(0 < dynamic_compartment.mass())

    def test_init_species_pop_from_distribution(self):
        self.multialgorithm_simulation.create_dynamic_compartments()
        self.multialgorithm_simulation.init_species_pop_from_distribution()
        species_wo_init_conc = ['species_1[c]', 'species_3[c]']
        for species_id in species_wo_init_conc:
            self.assertEqual(self.multialgorithm_simulation.init_populations[species_id], 0)
        for concentration in self.model.get_distribution_init_concentrations():
            self.assertTrue(0 <= self.multialgorithm_simulation.init_populations[concentration.species.id])

        # todo: statistically evaluate sampled population
        # ensure that over multiple runs of init_species_pop_from_distribution():
        # mean(species population) ~= mean(volume) * mean(concentration)

    def test_make_local_species_population(self):
        self.multialgorithm_simulation.create_dynamic_compartments()
        self.multialgorithm_simulation.init_species_pop_from_distribution()
        local_species_population = self.multialgorithm_simulation.make_local_species_population()
        self.assertEqual(local_species_population._molecular_weights,
            self.multialgorithm_simulation.molecular_weights_for_species())

        # test the initial population slopes
        # continuous adjustments are only allowed on species used by continuous submodels
        used_by_continuous_submodels = \
            ['species_1[e]', 'species_2[e]', 'species_1[c]', 'species_2[c]', 'species_3[c]']
        adjustments = {species_id: 0. for species_id in used_by_continuous_submodels}
        self.assertEqual(local_species_population.adjust_continuously(1, adjustments), None)
        not_in_a_reaction = ['H2O[e]', 'H2O[c]']
        used_by_discrete_submodels = ['species_4[c]', 'species_5[c]', 'species_6[c]']
        adjustments = {species_id: 0. for species_id in used_by_discrete_submodels + not_in_a_reaction}
        with self.assertRaises(DynamicSpeciesPopulationError):
            local_species_population.adjust_continuously(2, adjustments)

    def test_set_simultaneous_execution_priorities(self):
        expected_order_of_sim_obj_classes = [SsaSubmodel,
                                             NrmSubmodel,
                                             DsaSubmodel,
                                             DfbaSubmodel,
                                             OdeSubmodel,
                                             MultialgorithmicCheckpointingSimObj]
        self.multialgorithm_simulation.set_simultaneous_execution_priorities()
        # ensure that expected_order_of_sim_obj_classes are arranged in decreasing priority
        for i in range(len(expected_order_of_sim_obj_classes) - 1):
            simulation_object_class = expected_order_of_sim_obj_classes[i]
            next_simulation_object_class = expected_order_of_sim_obj_classes[i+1]
            self.assertLess(simulation_object_class.metadata.class_priority,
                            next_simulation_object_class.metadata.class_priority)

    def test_initialize_components(self):
        self.multialgorithm_simulation.initialize_components()
        self.assertTrue(isinstance(self.multialgorithm_simulation.local_species_population,
                        LocalSpeciesPopulation))
        for dynamic_compartment in self.multialgorithm_simulation.temp_dynamic_compartments.values():
            self.assertTrue(isinstance(dynamic_compartment.species_population, LocalSpeciesPopulation))

    def test_initialize_infrastructure(self):
        self.multialgorithm_simulation.initialize_components()
        self.multialgorithm_simulation.initialize_infrastructure()
        self.assertTrue(isinstance(self.multialgorithm_simulation.dynamic_model, DynamicModel))

        de_simulation_config = SimulationConfig(time_max=10, output_dir=self.results_dir)
        wc_sim_config = WCSimulationConfig(de_simulation_config, dfba_time_step=1, checkpoint_period=10)
        multialg_sim = MultialgorithmSimulation(self.model, wc_sim_config)
        multialg_sim.initialize_components()
        multialg_sim.initialize_infrastructure()
        self.assertEqual(multialg_sim.checkpointing_sim_obj.checkpoint_dir, self.results_dir)
        self.assertTrue(multialg_sim.checkpointing_sim_obj.access_state_object is not None)
        self.assertTrue(isinstance(multialg_sim.checkpointing_sim_obj, MultialgorithmicCheckpointingSimObj))
        self.assertTrue(isinstance(multialg_sim.dynamic_model, DynamicModel))

    def test_build_simulation(self):
        de_simulation_config = SimulationConfig(time_max=10, output_dir=self.results_dir)
        wc_sim_config = WCSimulationConfig(de_simulation_config, dfba_time_step=1, checkpoint_period=10)
        multialgorithm_simulation = MultialgorithmSimulation(self.model, wc_sim_config)
        simulation_engine, _ = multialgorithm_simulation.build_simulation()
        # 3 objects: 2 submodels, and the checkpointing obj:
        expected_sim_objs = set(['CHECKPOINTING_SIM_OBJ', 'submodel_1', 'submodel_2'])
        self.assertEqual(expected_sim_objs, set(list(simulation_engine.simulation_objects)))
        self.assertEqual(type(multialgorithm_simulation.checkpointing_sim_obj),
                         MultialgorithmicCheckpointingSimObj)
        self.assertEqual(multialgorithm_simulation.dynamic_model.get_num_submodels(), 2)

        # check that submodels receive options
        dfba_options = dict(dfba='fast but inaccurate')
        ssa_options = dict(ssa='accurate but slow')
        options = {'DfbaSubmodel': dict(options=dfba_options),
                   'SsaSubmodel': dict(options=ssa_options)
                  }
        multialgorithm_simulation = MultialgorithmSimulation(self.model, wc_sim_config, options)
        multialgorithm_simulation.build_simulation()
        dfba_submodel = multialgorithm_simulation.dynamic_model.dynamic_submodels['submodel_1']
        ssa_submodel = multialgorithm_simulation.dynamic_model.dynamic_submodels['submodel_2']
        self.assertEqual(dfba_submodel.options, dfba_options)
        self.assertEqual(ssa_submodel.options, ssa_options)

        # test skipped submodel
        submodels_to_skip = ['submodel_2']
        self.wc_sim_config.submodels_to_skip = submodels_to_skip
        ma_sim = MultialgorithmSimulation(self.model, self.wc_sim_config)
        _, dynamic_model = ma_sim.build_simulation()
        expected_dynamic_submodels = set([sm.id for sm in self.model.get_submodels()]) - ma_sim.skipped_submodels()
        self.assertEqual(expected_dynamic_submodels, set(dynamic_model.dynamic_submodels))

        submodel_1 = self.model.submodels.get(id='submodel_1')[0]
        # WC:modeling_framework is not an instance of a modeling framework
        submodel_1.framework = onto['WC:modeling_framework']
        ma_sim = MultialgorithmSimulation(self.model, self.wc_sim_config)
        with self.assertRaisesRegex(MultialgorithmError, 'Unsupported lang_submodel framework'):
            ma_sim.build_simulation()

    def test_get_dynamic_compartments(self):
        expected_compartments = dict(
            submodel_1=['c', 'e'],
            submodel_2=['c']
        )
        self.multialgorithm_simulation.build_simulation()
        for submodel_id in ['submodel_1', 'submodel_2']:
            submodel = self.model.submodels.get_one(id=submodel_id)
            submodel_dynamic_compartments = self.multialgorithm_simulation.get_dynamic_compartments(submodel)
            self.assertEqual(set(submodel_dynamic_compartments.keys()), set(expected_compartments[submodel_id]))

    def test_str(self):
        self.multialgorithm_simulation.create_dynamic_compartments()
        self.multialgorithm_simulation.init_species_pop_from_distribution()
        self.multialgorithm_simulation.local_species_population = \
            self.multialgorithm_simulation.make_local_species_population(retain_history=False)
        self.assertIn('species_1[e]', str(self.multialgorithm_simulation))
        self.assertIn('model:', str(self.multialgorithm_simulation))
Пример #3
0
class TestDynamicSubmodelStatically(unittest.TestCase):

    def setUp(self, std_init_concentrations=None):

        self.MODEL_FILENAME = os.path.join(os.path.dirname(__file__), 'fixtures',
                                           'test_submodel_no_shared_species.xlsx')
        self.model = Reader().run(self.MODEL_FILENAME)[Model][0]
        prepare_model(self.model)

        if std_init_concentrations is not None:
            for conc in self.model.distribution_init_concentrations:
                conc.std = std_init_concentrations

        self.misconfigured_dynamic_submodels = {}
        self.dynamic_submodels = {}
        for lang_submodel in self.model.get_submodels():
            self.dynamic_submodels[lang_submodel.id] = DynamicSubmodel(
                *make_dynamic_submodel_params(self.model, lang_submodel))

            # create dynamic submodels that lack a dynamic compartment
            id, dynamic_model, reactions, species, dynamic_compartments, local_species_pop = \
                make_dynamic_submodel_params(self.model, lang_submodel)
            dynamic_compartments.popitem()
            self.misconfigured_dynamic_submodels[lang_submodel.id] = DynamicSubmodel(
                id, None, reactions, species, dynamic_compartments, local_species_pop)

    def test_get_state(self):
        for dynamic_submodel in self.dynamic_submodels.values():
            self.assertEqual(dynamic_submodel.get_state(), DynamicSubmodel.GET_STATE_METHOD_MESSAGE)

    def test_get_num_submodels(self):
        for dynamic_submodel in self.dynamic_submodels.values():
            self.assertEqual(dynamic_submodel.get_num_submodels(), 2)

    def expected_molar_conc(self, dynamic_submodel, species_id):
        species = list(filter(lambda s: s.id == species_id, dynamic_submodel.species))[0]
        init_volume = species.compartment.init_volume.mean
        copy_num = ModelUtilities.sample_copy_num_from_concentration(species, init_volume, RandomStateManager.instance())
        volume = dynamic_submodel.dynamic_compartments[species.compartment.id].volume()
        return copy_num / (volume * Avogadro)

    def test_calc_reaction_rates(self):
        # set standard deviation of initial conc. to 0
        self.setUp(std_init_concentrations=0.)
        de_simulation_config = SimulationConfig(time_max=10)
        wc_sim_config = WCSimulationConfig(de_simulation_config, dfba_time_step=1)
        multialgorithm_simulation = MultialgorithmSimulation(self.model, wc_sim_config)
        _, dynamic_model = multialgorithm_simulation.build_simulation()

        # rate law for reaction_4-forward: k_cat_4_for * max(species_4[c], p_4)
        k_cat_4_for = 1
        p_4 = 2
        species_4_c_pop = \
            multialgorithm_simulation.local_species_population.read_one(0, 'species_4[c]')
        expected_rate_reaction_4_forward = k_cat_4_for * max(species_4_c_pop, p_4)
        expected_rates = {
            'reaction_2': 0.0,
            'reaction_4': expected_rate_reaction_4_forward
        }
        for dynamic_submodel in multialgorithm_simulation.dynamic_model.dynamic_submodels.values():
            rates = dynamic_submodel.calc_reaction_rates()
            for index, rxn in enumerate(dynamic_submodel.reactions):
                if rxn.id in expected_rates:
                    self.assertAlmostEqual(list(rates)[index], expected_rates[rxn.id])

    expected_enabled = {
        'submodel_1': set([
            'reaction_1',
            'reaction_2',
            '__dfba_ex_submodel_1_species_1_e',
            '__dfba_ex_submodel_1_species_2_e',
        ]),
        'submodel_2': set([
            'reaction_4',
            'reaction_3_forward',
            'reaction_3_backward',
        ]),
    }

    def test_enabled_reaction(self):
        for dynamic_submodel in self.dynamic_submodels.values():
            enabled = set()
            for rxn in dynamic_submodel.reactions:
                if dynamic_submodel.enabled_reaction(rxn):
                    enabled.add(rxn.id)
            self.assertEqual(TestDynamicSubmodelStatically.expected_enabled[dynamic_submodel.id], enabled)

    def test_identify_enabled_reactions(self):
        for dynamic_submodel in self.dynamic_submodels.values():
            expected_set = TestDynamicSubmodelStatically.expected_enabled[dynamic_submodel.id]
            expected_array =\
                numpy.asarray([r.id in expected_set for r in dynamic_submodel.reactions]).astype(int)
            enabled = dynamic_submodel.identify_enabled_reactions()
            self.assertTrue(numpy.array_equal(enabled, expected_array))

    def test_execute_disabled_reactions(self):
        # test exception by executing reactions that aren't enabled
        enabled_rxn_ids = []
        for set_rxn_ids in TestDynamicSubmodelStatically.expected_enabled.values():
            enabled_rxn_ids.extend(list(set_rxn_ids))
        enabled_reactions = [get_component_by_id(self.model.get_reactions(), rxn_id)
                             for rxn_id in enabled_rxn_ids]
        for dynamic_submodel in self.dynamic_submodels.values():
            for reaction in dynamic_submodel.reactions:
                if reaction not in enabled_reactions:
                    with self.assertRaisesRegex(DynamicMultialgorithmError,
                                                "dynamic submodel .* cannot execute reaction"):
                        dynamic_submodel.execute_reaction(reaction)

    def do_test_execute_reaction(self, reaction_id, expected_adjustments):
        rxn = self.model.get_reactions(id=reaction_id)[0]
        dynamic_submodel = self.dynamic_submodels[rxn.submodel.id]
        before = dynamic_submodel.get_species_counts()
        dynamic_submodel.execute_reaction(rxn)
        after = dynamic_submodel.get_species_counts()
        for species_id, change in expected_adjustments.items():
            self.assertEqual(change, after[species_id] - before[species_id])

    def test_execute_reaction(self):
        # test reactions 'by hand'
        # reversible reactions have been split in two
        self.do_test_execute_reaction('reaction_3_forward',
                                      {'species_2[c]': -1, 'species_4[c]': -2, 'species_5[c]': 1})
        # test reaction in which a species appears multiple times
        self.do_test_execute_reaction('reaction_2', {'species_1[c]': 1, 'species_3[c]': 1})
from wc_lang.io import Reader
import wc_lang.sbml.io as sbml_io
from obj_model import utils
from wc_lang.prepare import PrepareModel

args = Namespace(end_time=1,
    time_step=1,
    test_submodel_id='Metabolism',
    wc_lang_model="example-model.xlsx")

MODEL_FILENAME = path.join(path.dirname(__file__), '../../..', 'wc_lang/tests/fixtures',
    args.wc_lang_model)
print('using:', MODEL_FILENAME)
model = Reader().run(MODEL_FILENAME)
PrepareModel(model).run()
submodel = utils.get_component_by_id(model.get_submodels(), args.test_submodel_id)
_, SBMLfile = tempfile.mkstemp()

def try_cobrapy(args):
    time = 0
    while time < args.end_time:
        print('time:', time)
        sbml_document = sbml_io.SBMLExchange.write_submodel(submodel)
        if not writeSBMLToFile(sbml_document, SBMLfile):
            raise ValueError("SBML document for submodel '{}' could not be written to '{}'.".format(
                args.test_submodel_id, SBMLfile))
        # cobra_model = cobra.io.read_sbml_model(SBMLfile)
        cobra_model = cobra.io.sbml3.read_sbml_model(SBMLfile)
        print('cobra_model', cobra_model)
        print('cobra_model', cobra_model._repr_html_())
        solution = cobra_model.optimize()