def load(self, filename):
     global classifier
     classifier = Classifier.load(filename)
     print "Classifier is Loaded"
Пример #2
0
    def test_IBk(self):

        # Train a classifier.
        print('Training IBk classifier...')
        c = Classifier(name='weka.classifiers.lazy.IBk', ckargs={'-K': 1})
        training_fn = os.path.join(BP, 'fixtures/abalone-train.arff')
        c.train(training_fn, verbose=1)
        self.assertTrue(c._model_data)

        # Make a valid query.
        print('Using IBk classifier...')
        query_fn = os.path.join(BP, 'fixtures/abalone-query.arff')
        predictions = list(c.predict(query_fn, verbose=1, cleanup=0))
        pred0 = predictions[0]
        print('pred0:', pred0)
        pred1 = PredictionResult(actual=None, predicted=7, probability=None)
        print('pred1:', pred1)
        self.assertEqual(pred0, pred1)

        # Make a valid query.
        with self.assertRaises(PredictionError):
            query_fn = os.path.join(BP, 'fixtures/abalone-query-bad.arff')
            predictions = list(c.predict(query_fn, verbose=1, cleanup=0))

        # Make a valid query manually.
        query = arff.ArffFile(relation='test',
                              schema=[
                                  ('Sex', ('M', 'F', 'I')),
                                  ('Length', 'numeric'),
                                  ('Diameter', 'numeric'),
                                  ('Height', 'numeric'),
                                  ('Whole weight', 'numeric'),
                                  ('Shucked weight', 'numeric'),
                                  ('Viscera weight', 'numeric'),
                                  ('Shell weight', 'numeric'),
                                  ('Class_Rings', 'integer'),
                              ])
        query.append(
            ['M', 0.35, 0.265, 0.09, 0.2255, 0.0995, 0.0485, 0.07, '?'])
        data_str0 = """% 
@relation test
@attribute 'Sex' {F,I,M}
@attribute 'Length' numeric
@attribute 'Diameter' numeric
@attribute 'Height' numeric
@attribute 'Whole weight' numeric
@attribute 'Shucked weight' numeric
@attribute 'Viscera weight' numeric
@attribute 'Shell weight' numeric
@attribute 'Class_Rings' integer
@data
M,0.35,0.265,0.09,0.2255,0.0995,0.0485,0.07,?
"""
        data_str1 = query.write(fmt=DENSE)
        #        print(data_str0
        #        print(data_str1
        self.assertEqual(data_str0, data_str1)
        predictions = list(c.predict(query, verbose=1, cleanup=0))
        self.assertEqual(
            predictions[0],
            PredictionResult(actual=None, predicted=7, probability=None))

        # Test pickling.
        fn = os.path.join(BP, 'fixtures/IBk.pkl')
        c.save(fn)
        c = Classifier.load(fn)
        predictions = list(c.predict(query, verbose=1, cleanup=0))
        self.assertEqual(
            predictions[0],
            PredictionResult(actual=None, predicted=7, probability=None))
        #print('Pickle verified.')

        # Make a valid dict query manually.
        query = arff.ArffFile(relation='test',
                              schema=[
                                  ('Sex', ('M', 'F', 'I')),
                                  ('Length', 'numeric'),
                                  ('Diameter', 'numeric'),
                                  ('Height', 'numeric'),
                                  ('Whole weight', 'numeric'),
                                  ('Shucked weight', 'numeric'),
                                  ('Viscera weight', 'numeric'),
                                  ('Shell weight', 'numeric'),
                                  ('Class_Rings', 'integer'),
                              ])
        query.append({
            'Sex': 'M',
            'Length': 0.35,
            'Diameter': 0.265,
            'Height': 0.09,
            'Whole weight': 0.2255,
            'Shucked weight': 0.0995,
            'Viscera weight': 0.0485,
            'Shell weight': 0.07,
            'Class_Rings': arff.MISSING,
        })
        predictions = list(c.predict(query, verbose=1, cleanup=0))
        self.assertEqual(
            predictions[0],
            PredictionResult(actual=None, predicted=7, probability=None))
 def load(self, filename):
     global classifier
     classifier = Classifier.load(filename)
     print "Classifier is Loaded"
Пример #4
0
    def test_IBk(self):
        
        # Train a classifier.
        print('Training IBk classifier...')
        c = Classifier(name='weka.classifiers.lazy.IBk', ckargs={'-K':1})
        training_fn = os.path.join(BP, 'fixtures/abalone-train.arff')
        c.train(training_fn, verbose=1)
        self.assertTrue(c._model_data)
        
        # Make a valid query.
        print('Using IBk classifier...')
        query_fn = os.path.join(BP, 'fixtures/abalone-query.arff')
        predictions = list(c.predict(query_fn, verbose=1, cleanup=0))
        pred0 = predictions[0]
        print('pred0:', pred0)
        pred1 = PredictionResult(actual=None, predicted=7, probability=None)
        print('pred1:', pred1)
        self.assertEqual(pred0, pred1)
            
        # Make a valid query.
        with self.assertRaises(PredictionError):
            query_fn = os.path.join(BP, 'fixtures/abalone-query-bad.arff')
            predictions = list(c.predict(query_fn, verbose=1, cleanup=0))
            
        # Make a valid query manually.
        query = arff.ArffFile(relation='test', schema=[
            ('Sex', ('M', 'F', 'I')),
            ('Length', 'numeric'),
            ('Diameter', 'numeric'),
            ('Height', 'numeric'),
            ('Whole weight', 'numeric'),
            ('Shucked weight', 'numeric'),
            ('Viscera weight', 'numeric'),
            ('Shell weight', 'numeric'),
            ('Class_Rings', 'integer'),
        ])
        query.append(['M', 0.35, 0.265, 0.09, 0.2255, 0.0995, 0.0485, 0.07, '?'])
        data_str0 = """% 
@relation test
@attribute 'Sex' {F,I,M}
@attribute 'Length' numeric
@attribute 'Diameter' numeric
@attribute 'Height' numeric
@attribute 'Whole weight' numeric
@attribute 'Shucked weight' numeric
@attribute 'Viscera weight' numeric
@attribute 'Shell weight' numeric
@attribute 'Class_Rings' integer
@data
M,0.35,0.265,0.09,0.2255,0.0995,0.0485,0.07,?
"""
        data_str1 = query.write(fmt=DENSE)
#        print(data_str0
#        print(data_str1
        self.assertEqual(data_str0, data_str1)
        predictions = list(c.predict(query, verbose=1, cleanup=0))
        self.assertEqual(predictions[0],
            PredictionResult(actual=None, predicted=7, probability=None))
        
        # Test pickling.
        fn = os.path.join(BP, 'fixtures/IBk.pkl')
        c.save(fn)
        c = Classifier.load(fn)
        predictions = list(c.predict(query, verbose=1, cleanup=0))
        self.assertEqual(predictions[0],
            PredictionResult(actual=None, predicted=7, probability=None))
        #print('Pickle verified.')
        
        # Make a valid dict query manually.
        query = arff.ArffFile(relation='test', schema=[
            ('Sex', ('M', 'F', 'I')),
            ('Length', 'numeric'),
            ('Diameter', 'numeric'),
            ('Height', 'numeric'),
            ('Whole weight', 'numeric'),
            ('Shucked weight', 'numeric'),
            ('Viscera weight', 'numeric'),
            ('Shell weight', 'numeric'),
            ('Class_Rings', 'integer'),
        ])
        query.append({
            'Sex': 'M',
            'Length': 0.35,
            'Diameter': 0.265,
            'Height': 0.09,
            'Whole weight': 0.2255,
            'Shucked weight': 0.0995,
            'Viscera weight': 0.0485,
            'Shell weight': 0.07,
            'Class_Rings': arff.MISSING,
        })
        predictions = list(c.predict(query, verbose=1, cleanup=0))
        self.assertEqual(predictions[0],
            PredictionResult(actual=None, predicted=7, probability=None))