Пример #1
0
def test_XY_dataset_sparse_y():
    X = ["One and two", "One only", "Two nothing else", "Two and three"]
    Y = np.array([[1, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0]])
    Y_sparse = csr_matrix(Y)

    vec = KerasVectorizer()
    X_vec = vec.fit_transform(X)

    data = tf.data.Dataset.from_tensor_slices((X_vec, Y))
    data = data.shuffle(100, seed=42)
    clf = CNNClassifier(batch_size=2, sparse_y=True, multilabel=True)
    clf.fit(data)
    assert clf.score(data, Y_sparse) > 0.3
Пример #2
0
def test_XY_dataset():
    X = ["One", "One only", "Two nothing else", "Two and three"]
    Y = np.array([0, 0, 1, 1])

    vec = KerasVectorizer()
    X_vec = vec.fit_transform(X)

    data = tf.data.Dataset.from_tensor_slices((X_vec, Y))
    data = data.shuffle(100, seed=42)
    clf = CNNClassifier(batch_size=2)

    clf.fit(data)
    assert clf.score(data, Y) > 0.3
Пример #3
0
def test_save_load():
    X = ["One", "One only", "Two nothing else", "Two and three"]
    Y = np.array([0, 0, 1, 1])

    vec = KerasVectorizer()
    X_vec = vec.fit_transform(X)

    model = CNNClassifier()
    model.fit(X_vec, Y)

    with tempfile.TemporaryDirectory() as tmp_dir:
        model.save(tmp_dir)
        loaded_model = CNNClassifier()
        loaded_model.load(tmp_dir)
        assert hasattr(loaded_model, 'model')
        assert loaded_model.score(X_vec, Y) > 0.6