Пример #1
0
    def calc_store_flux_data(self):
        westpa.rc.pstatus(
            'Calculating mean flux and confidence intervals for iterations [{},{})'
            .format(self.iter_range.iter_start, self.iter_range.iter_stop))

        fluxdata = extract_fluxes(self.iter_range.iter_start,
                                  self.iter_range.iter_stop, self.data_reader)

        # Create a group to store data in
        output_group = h5io.create_hdf5_group(self.output_h5file,
                                              'target_flux',
                                              replace=False,
                                              creating_program=self.prog)
        self.output_group = output_group
        output_group.attrs['version_code'] = self.output_format_version
        self.iter_range.record_data_iter_range(output_group)

        n_targets = len(fluxdata)
        index = np.empty((len(fluxdata), ), dtype=target_index_dtype)
        avg_fluxdata = np.empty((n_targets, ), dtype=ci_dtype)

        for itarget, (target_label,
                      target_fluxdata) in enumerate(fluxdata.items()):
            # Create group and index entry
            index[itarget]['target_label'] = str(target_label)
            target_group = output_group.create_group(
                'target_{}'.format(itarget))

            self.target_groups[target_label] = target_group

            # Store per-iteration values
            target_group['n_iter'] = target_fluxdata['n_iter']
            target_group['count'] = target_fluxdata['count']
            target_group['flux'] = target_fluxdata['flux']
            h5io.label_axes(target_group['flux'], ['n_iter'], units=['tau^-1'])

            # Calculate flux autocorrelation
            fluxes = target_fluxdata['flux']
            mean_flux = fluxes.mean()
            fmm = fluxes - mean_flux
            acorr = fftconvolve(fmm, fmm[::-1])
            acorr = acorr[len(acorr) // 2:]
            acorr /= acorr[0]
            acorr_ds = target_group.create_dataset('flux_autocorrel',
                                                   data=acorr)
            h5io.label_axes(acorr_ds, ['lag'], ['tau'])

            # Calculate overall averages and CIs
            #avg, lb_ci, ub_ci, correl_len = mclib.mcbs_ci_correl(fluxes, np.mean, self.alpha, self.n_sets,
            #                                                     autocorrel_alpha=self.autocorrel_alpha, subsample=np.mean)
            avg, lb_ci, ub_ci, sterr, correl_len = mclib.mcbs_ci_correl(
                {'dataset': fluxes},
                estimator=(lambda stride, dataset: np.mean(dataset)),
                alpha=self.alpha,
                n_sets=self.n_sets,
                autocorrel_alpha=self.autocorrel_alpha,
                subsample=np.mean,
                do_correl=self.do_correl,
                mcbs_enable=self.mcbs_enable)
            avg_fluxdata[itarget] = (self.iter_range.iter_start,
                                     self.iter_range.iter_stop, avg, lb_ci,
                                     ub_ci, sterr, correl_len)
            westpa.rc.pstatus('target {!r}:'.format(target_label))
            westpa.rc.pstatus(
                '  correlation length = {} tau'.format(correl_len))
            westpa.rc.pstatus(
                '  mean flux and CI   = {:e} ({:e},{:e}) tau^(-1)'.format(
                    avg, lb_ci, ub_ci))
            index[itarget]['mean_flux'] = avg
            index[itarget]['mean_flux_ci_lb'] = lb_ci
            index[itarget]['mean_flux_ci_ub'] = ub_ci
            index[itarget]['mean_flux_correl_len'] = correl_len

        # Write index and summary
        index_ds = output_group.create_dataset('index', data=index)
        index_ds.attrs['mcbs_alpha'] = self.alpha
        index_ds.attrs['mcbs_autocorrel_alpha'] = self.autocorrel_alpha
        index_ds.attrs['mcbs_n_sets'] = self.n_sets

        self.fluxdata = fluxdata
        self.output_h5file['avg_flux'] = avg_fluxdata
Пример #2
0
    def w_postanalysis_matrix(self):
        pi = self.progress.indicator
        pi.new_operation('Initializing')

        self.data_reader.open('r')
        nbins = self.assignments_file.attrs['nbins']

        state_labels = self.assignments_file['state_labels'][...]
        state_map = self.assignments_file['state_map'][...]
        nstates = len(state_labels)

        start_iter, stop_iter = self.iter_range.iter_start, self.iter_range.iter_stop  # h5io.get_iter_range(self.assignments_file)
        iter_count = stop_iter - start_iter

        nfbins = nbins * nstates

        flux_shape = (iter_count, nfbins, nfbins)
        pop_shape = (iter_count, nfbins)

        h5io.stamp_iter_range(self.output_file, start_iter, stop_iter)

        bin_populations_ds = self.output_file.create_dataset(
            'bin_populations', shape=pop_shape, dtype=weight_dtype)
        h5io.stamp_iter_range(bin_populations_ds, start_iter, stop_iter)
        h5io.label_axes(bin_populations_ds, ['iteration', 'bin'])

        flux_grp = self.output_file.create_group('iterations')
        self.output_file.attrs['nrows'] = nfbins
        self.output_file.attrs['ncols'] = nfbins

        fluxes = np.empty(flux_shape[1:], weight_dtype)
        populations = np.empty(pop_shape[1:], weight_dtype)
        trans = np.empty(flux_shape[1:], np.int64)

        # Check to make sure this isn't a data set with target states
        #tstates = self.data_reader.data_manager.get_target_states(0)
        #if len(tstates) > 0:
        #    raise ValueError('Postanalysis reweighting analysis does not support WE simulation run under recycling conditions')

        pi.new_operation('Calculating flux matrices', iter_count)
        # Calculate instantaneous statistics
        for iiter, n_iter in enumerate(range(start_iter, stop_iter)):
            # Get data from the main HDF5 file
            iter_group = self.data_reader.get_iter_group(n_iter)
            seg_index = iter_group['seg_index']
            nsegs, npts = iter_group['pcoord'].shape[0:2]
            weights = seg_index['weight']

            # Get bin and traj. ensemble assignments from the previously-generated assignments file
            assignment_iiter = h5io.get_iteration_entry(
                self.assignments_file, n_iter)
            bin_assignments = np.require(
                self.assignments_file['assignments'][assignment_iiter +
                                                     np.s_[:nsegs, :npts]],
                dtype=index_dtype)

            mask_unknown = np.zeros_like(bin_assignments, dtype=np.uint16)

            macrostate_iiter = h5io.get_iteration_entry(
                self.assignments_file, n_iter)
            macrostate_assignments = np.require(
                self.assignments_file['trajlabels'][macrostate_iiter +
                                                    np.s_[:nsegs, :npts]],
                dtype=index_dtype)

            # Transform bin_assignments to take macrostate membership into account
            bin_assignments = nstates * bin_assignments + macrostate_assignments

            mask_indx = np.where(macrostate_assignments == nstates)
            mask_unknown[mask_indx] = 1

            # Calculate bin-to-bin fluxes, bin populations and number of obs transitions
            calc_stats(bin_assignments, weights, fluxes, populations, trans,
                       mask_unknown, self.sampling_frequency)

            # Store bin-based kinetics data
            bin_populations_ds[iiter] = populations

            # Setup sparse data structures for flux and obs
            fluxes_sp = sp.coo_matrix(fluxes)
            trans_sp = sp.coo_matrix(trans)

            assert fluxes_sp.nnz == trans_sp.nnz

            flux_iter_grp = flux_grp.create_group('iter_{:08d}'.format(n_iter))
            flux_iter_grp.create_dataset('flux',
                                         data=fluxes_sp.data,
                                         dtype=weight_dtype)
            flux_iter_grp.create_dataset('obs',
                                         data=trans_sp.data,
                                         dtype=np.int32)
            flux_iter_grp.create_dataset('rows',
                                         data=fluxes_sp.row,
                                         dtype=np.int32)
            flux_iter_grp.create_dataset('cols',
                                         data=fluxes_sp.col,
                                         dtype=np.int32)
            flux_iter_grp.attrs['nrows'] = nfbins
            flux_iter_grp.attrs['ncols'] = nfbins

            # Do a little manual clean-up to prevent memory explosion
            del iter_group, weights, bin_assignments
            del macrostate_assignments

            pi.progress += 1

            # Check and save the number of intermediate time points; this will be used to normalize the
            # flux and kinetics to tau in w_postanalysis_reweight.
            if self.assignments_file.attrs[
                    'subsampled'] == True or self.sampling_frequency == 'iteration':
                self.output_file.attrs['npts'] = 2
            else:
                #self.output_file.attrs['npts'] = npts if self.sampling_frequency == 'timepoint' else 2
                self.output_file.attrs['npts'] = npts
Пример #3
0
    def go(self):
        assert self.data_reader.parent_id_dsspec._h5file is None
        assert self.data_reader.weight_dsspec._h5file is None
        if hasattr(self.dssynth.dsspec, '_h5file'):
            assert self.dssynth.dsspec._h5file is None
        pi = self.progress.indicator
        pi.operation = 'Initializing'
        with pi, self.data_reader, WESTPAH5File(
                self.output_filename, 'w',
                creating_program=True) as self.output_file:
            assign = self.binning.mapper.assign

            # We always assign the entire simulation, so that no trajectory appears to start
            # in a transition region that doesn't get initialized in one.
            iter_start = 1
            iter_stop = self.data_reader.current_iteration

            h5io.stamp_iter_range(self.output_file, iter_start, iter_stop)

            nbins = self.binning.mapper.nbins
            self.output_file.attrs['nbins'] = nbins

            state_map = np.empty((self.binning.mapper.nbins + 1, ),
                                 index_dtype)
            state_map[:] = 0  # state_id == nstates => unknown state

            # Recursive mappers produce a generator rather than a list of labels
            # so consume the entire generator into a list
            labels = [
                np.string_(label) for label in self.binning.mapper.labels
            ]

            self.output_file.create_dataset('bin_labels',
                                            data=labels,
                                            compression=9)

            if self.states:
                nstates = len(self.states)
                state_map[:] = nstates  # state_id == nstates => unknown state
                state_labels = [
                    np.string_(state['label']) for state in self.states
                ]

                for istate, sdict in enumerate(self.states):
                    assert state_labels[istate] == np.string_(
                        sdict['label'])  # sanity check
                    state_assignments = assign(sdict['coords'])
                    for assignment in state_assignments:
                        state_map[assignment] = istate
                self.output_file.create_dataset('state_map',
                                                data=state_map,
                                                compression=9,
                                                shuffle=True)
                self.output_file[
                    'state_labels'] = state_labels  # + ['(unknown)']
            else:
                nstates = 0
            self.output_file.attrs['nstates'] = nstates
            # Stamp if this has been subsampled.
            self.output_file.attrs['subsampled'] = self.subsample

            iter_count = iter_stop - iter_start
            nsegs = np.empty((iter_count, ), seg_id_dtype)
            npts = np.empty((iter_count, ), seg_id_dtype)

            # scan for largest number of segments and largest number of points
            pi.new_operation('Scanning for segment and point counts',
                             iter_stop - iter_start)
            for iiter, n_iter in enumerate(range(iter_start, iter_stop)):
                iter_group = self.data_reader.get_iter_group(n_iter)
                nsegs[iiter], npts[iiter] = iter_group['pcoord'].shape[0:2]
                pi.progress += 1
                del iter_group

            pi.new_operation('Preparing output')

            # create datasets
            self.output_file.create_dataset('nsegs',
                                            data=nsegs,
                                            shuffle=True,
                                            compression=9)
            self.output_file.create_dataset('npts',
                                            data=npts,
                                            shuffle=True,
                                            compression=9)

            max_nsegs = nsegs.max()
            max_npts = npts.max()

            assignments_shape = (iter_count, max_nsegs, max_npts)
            assignments_dtype = np.min_scalar_type(nbins)
            assignments_ds = self.output_file.create_dataset(
                'assignments',
                dtype=assignments_dtype,
                shape=assignments_shape,
                compression=4,
                shuffle=True,
                chunks=h5io.calc_chunksize(assignments_shape,
                                           assignments_dtype),
                fillvalue=nbins,
            )
            if self.states:
                trajlabel_dtype = np.min_scalar_type(nstates)
                trajlabels_ds = self.output_file.create_dataset(
                    'trajlabels',
                    dtype=trajlabel_dtype,
                    shape=assignments_shape,
                    compression=4,
                    shuffle=True,
                    chunks=h5io.calc_chunksize(assignments_shape,
                                               trajlabel_dtype),
                    fillvalue=nstates,
                )
                statelabels_ds = self.output_file.create_dataset(
                    'statelabels',
                    dtype=trajlabel_dtype,
                    shape=assignments_shape,
                    compression=4,
                    shuffle=True,
                    chunks=h5io.calc_chunksize(assignments_shape,
                                               trajlabel_dtype),
                    fillvalue=nstates,
                )

            pops_shape = (iter_count, nstates + 1, nbins + 1)
            pops_ds = self.output_file.create_dataset(
                'labeled_populations',
                dtype=weight_dtype,
                shape=pops_shape,
                compression=4,
                shuffle=True,
                chunks=h5io.calc_chunksize(pops_shape, weight_dtype),
            )
            h5io.label_axes(
                pops_ds,
                [np.string_(i) for i in ['iteration', 'state', 'bin']])

            pi.new_operation('Assigning to bins', iter_stop - iter_start)
            last_labels = None  # mapping of seg_id to last macrostate inhabited
            for iiter, n_iter in enumerate(range(iter_start, iter_stop)):
                # get iteration info in this block

                if iiter == 0:
                    last_labels = np.empty((nsegs[iiter], ), index_dtype)
                    last_labels[:] = nstates  # unknown state

                # Slices this iteration into n_workers groups of segments, submits them to wm, splices results back together
                assignments, trajlabels, pops, statelabels = self.assign_iteration(
                    n_iter, nstates, nbins, state_map, last_labels)

                # Do stuff with this iteration's results

                last_labels = trajlabels[:, -1].copy()
                assignments_ds[iiter, 0:nsegs[iiter],
                               0:npts[iiter]] = assignments
                pops_ds[iiter] = pops
                if self.states:
                    trajlabels_ds[iiter, 0:nsegs[iiter],
                                  0:npts[iiter]] = trajlabels
                    statelabels_ds[iiter, 0:nsegs[iiter],
                                   0:npts[iiter]] = statelabels

                pi.progress += 1
                del assignments, trajlabels, pops, statelabels

            for dsname in 'assignments', 'npts', 'nsegs', 'labeled_populations', 'statelabels':
                h5io.stamp_iter_range(self.output_file[dsname], iter_start,
                                      iter_stop)