def __init__(self, netcdffile, logging): """ First try to setup a class read netcdf files (converted with pcr2netcdf.py) netcdffile: file to read the forcing data from logging: python logging object vars: list of variables to get from file """ if os.path.exists(netcdffile): self.dataset = netCDF4.Dataset(netcdffile, mode='r') else: logging.error(os.path.abspath(netcdffile) + " not found!") exit(ValueError) try: self.x = self.dataset.variables['x'][:] except: self.x = self.dataset.variables['lon'][:] # Now check Y values to see if we must flip the data try: self.y = self.dataset.variables['y'][:] except: self.y = self.dataset.variables['lat'][:] x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] (self.latidx,) = logical_and(self.x >= x.min(), self.x < x.max()).nonzero() (self.lonidx,) = logical_and(self.y >= x.min(), self.y < y.max()).nonzero() logging.info("Reading static input from netCDF file: " + netcdffile + ": " + str(self.dataset).replace('\n', ' '))
def readMap(fileName, fileFormat,logger,unzipcmd='pigz -d -k'): """ Read PCRaster geographical file into memory """ unzipped = 0 if not os.path.exists(fileName): # try and unzip if os.path.exists(fileName + ".gz"): os.system(unzipcmd + ' ' + fileName + ".gz") logger.info("unzipping: " + fileName + ".gz") unzipped = 1 pcrdata = _pcrut.readmap(fileName) x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))),NaN)[0,:] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))),NaN)[:,0] FillVal = float(1E31) data = _pcrut.pcr2numpy(pcrdata,FillVal) if unzipped: #Delete uncompressed file if compressed exsists if os.path.exists(fileName + ".gz"): logger.info("Removing: " + fileName) os.remove(fileName) return x, y, data, FillVal
def readMap(fileName, fileFormat, logger, unzipcmd='pigz -d -k'): """ Read PCRaster geographical file into memory """ unzipped = 0 if not os.path.exists(fileName): # try and unzip if os.path.exists(fileName + ".gz"): os.system(unzipcmd + ' ' + fileName + ".gz") logger.info("unzipping: " + fileName + ".gz") unzipped = 1 pcrdata = _pcrut.readmap(fileName) x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] FillVal = float(1E31) data = _pcrut.pcr2numpy(pcrdata, FillVal) if unzipped: #Delete uncompressed file if compressed exsists if os.path.exists(fileName + ".gz"): logger.info("Removing: " + fileName) os.remove(fileName) return x, y, data, FillVal
def __init__(self, netcdffile, logger, starttime, timesteps, EPSG="EPSG:4326", timestepsecs=86400, metadata={}, maxbuf=25, least_significant_digit=None): """ Under construction """ def date_range(start, end, tdelta="days"): if tdelta == "days": r = (end + dt.timedelta(days=1) - start).days return [start + dt.timedelta(days=i) for i in range(r)] else: r = (end + dt.timedelta(days=1) - start).days * 24 return [start + dt.timedelta(hours=i) for i in range(r)] self.least_significant_digit = least_significant_digit self.logger = logger # Do not allow a max buffer larger than the number of timesteps self.maxbuf = maxbuf if timesteps >= maxbuf else timesteps self.ncfile = netcdffile self.timesteps = timesteps rows = pcraster._pcraster.clone().nrRows() cols = pcraster._pcraster.clone().nrCols() cellsize = pcraster._pcraster.clone().cellSize() yupper = pcraster._pcraster.clone().north() xupper = pcraster._pcraster.clone().west() x = _pcrut.pcr2numpy( _pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy( _pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] end = starttime + dt.timedelta(seconds=timestepsecs * self.timesteps - 1) if timestepsecs == 86400: timeList = date_range(starttime, end, tdelta="days") else: timeList = date_range(starttime, end, tdelta="hours") self.timestepbuffer = zeros((self.maxbuf, len(y), len(x))) self.bufflst = {} globmetadata.update(metadata) prepare_nc(self.ncfile, timeList, x, y, globmetadata, logger, Format=netcdfformat, EPSG=EPSG)
def __init__(self, netcdffile, logging, vars=[]): """ First try to setup a class read netcdf files (converted with pcr2netcdf.py) netcdffile: file to read the forcing data from logging: python logging object vars: list of variables to get from file """ if os.path.exists(netcdffile): self.dataset = netCDF4.Dataset(netcdffile, mode='r') else: logging.error(os.path.abspath(netcdffile) + " not found!") exit(ValueError) logging.info("Reading state input from netCDF file: " + netcdffile + ": " + str(self.dataset).replace('\n', ' ')) self.alldat = {} a = pcr2numpy(cover(0.0), 0.0).flatten() # Determine steps to load in mem based on estimated memory usage floatspermb = 1048576 / 4 maxmb = 40 self.maxsteps = maxmb * len(a) / floatspermb + 1 self.fstep = 0 self.lstep = self.fstep + self.maxsteps try: self.x = self.dataset.variables['x'][:] except: self.x = self.dataset.variables['lon'][:] # Now check Y values to see if we must flip the data try: self.y = self.dataset.variables['y'][:] except: self.y = self.dataset.variables['lat'][:] x = _pcrut.pcr2numpy( _pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy( _pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] (self.latidx, ) = logical_and(self.x >= x.min(), self.x < x.max()).nonzero() (self.lonidx, ) = logical_and(self.y >= x.min(), self.y < y.max()).nonzero() for var in vars: try: self.alldat[var] = self.dataset.variables[var][self.fstep:self. maxsteps] except: self.alldat.pop(var, None) logging.warn("Variable " + var + " not found in netcdf file: " + netcdffile)
def __init__(self, netcdffile, logging, vars=[]): """ First try to setup a class read netcdf files (converted with pcr2netcdf.py) netcdffile: file to read the forcing data from logging: python logging object vars: list of variables to get from file """ if os.path.exists(netcdffile): self.dataset = netCDF4.Dataset(netcdffile, mode='r') else: logging.error(os.path.abspath(netcdffile) + " not found!") exit(ValueError) logging.info("Reading state input from netCDF file: " + netcdffile + ": " + str(self.dataset).replace('\n', ' ')) self.alldat = {} a = pcr2numpy(cover(0.0), 0.0).flatten() # Determine steps to load in mem based on estimated memory usage floatspermb = 1048576 / 4 maxmb = 40 self.maxsteps = maxmb * len(a) / floatspermb + 1 self.fstep = 0 self.lstep = self.fstep + self.maxsteps try: self.x = self.dataset.variables['x'][:] except: self.x = self.dataset.variables['lon'][:] # Now check Y values to see if we must flip the data try: self.y = self.dataset.variables['y'][:] except: self.y = self.dataset.variables['lat'][:] x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] (self.latidx,) = logical_and(self.x >= x.min(), self.x < x.max()).nonzero() (self.lonidx,) = logical_and(self.y >= x.min(), self.y < y.max()).nonzero() for var in vars: try: self.alldat[var] = self.dataset.variables[var][self.fstep:self.maxsteps] except: self.alldat.pop(var, None) logging.warn("Variable " + var + " not found in netcdf file: " + netcdffile)
def __init__(self, netcdffile, logger, starttime, timesteps, EPSG="EPSG:4326", timestepsecs=86400, metadata={}, zlib=True, Format="NETCDF4", maxbuf=25, least_significant_digit=None): """ Under construction """ self.EPSG = EPSG self.zlib = zlib self.Format = Format self.least_significant_digit = least_significant_digit def date_range(start, end, timestepsecs): r = int((end + dt.timedelta(seconds=timestepsecs) - start).total_seconds()/timestepsecs) return [start + dt.timedelta(seconds=(timestepsecs * i)) for i in range(r)] self.logger = logger # Do not allow a max buffer larger than the number of timesteps self.maxbuf = maxbuf if timesteps >= maxbuf else timesteps self.ncfile = netcdffile self.timesteps = timesteps rows = pcraster._pcraster.clone().nrRows() cols = pcraster._pcraster.clone().nrCols() cellsize = pcraster._pcraster.clone().cellSize() yupper = pcraster._pcraster.clone().north() xupper = pcraster._pcraster.clone().west() x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] # Shift one timestep as we output at the end #starttime = starttime + dt.timedelta(seconds=timestepsecs) end = starttime + dt.timedelta(seconds=timestepsecs * (self.timesteps -1)) timeList = date_range(starttime, end, timestepsecs) self.timestepbuffer = zeros((self.maxbuf, len(y), len(x))) self.bufferdirty = True self.bufflst = {} globmetadata.update(metadata) prepare_nc(self.ncfile, timeList, x, y, globmetadata, logger, Format=self.Format, EPSG=EPSG,zlib=self.zlib, least_significant_digit=self.least_significant_digit) self.nc_trg = None
def __init__(self, netcdffile, logger, starttime, timesteps, EPSG="EPSG:4326", timestepsecs=86400, metadata={}, zlib=True, Format="NETCDF4", maxbuf=25, least_significant_digit=None): """ Under construction """ self.EPSG = EPSG self.zlib = zlib self.Format = Format self.least_significant_digit = least_significant_digit def date_range(start, end, timestepsecs): r = int((end + dt.timedelta(seconds=timestepsecs) - start).total_seconds()/timestepsecs) return [start + dt.timedelta(seconds=(timestepsecs * i)) for i in range(r)] self.logger = logger # Do not allow a max buffer larger than the number of timesteps self.maxbuf = maxbuf if timesteps >= maxbuf else timesteps self.ncfile = netcdffile self.timesteps = timesteps rows = pcraster._pcraster.clone().nrRows() cols = pcraster._pcraster.clone().nrCols() cellsize = pcraster._pcraster.clone().cellSize() yupper = pcraster._pcraster.clone().north() xupper = pcraster._pcraster.clone().west() x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] # Shift one timestep as we output at the end #starttime = starttime + dt.timedelta(seconds=timestepsecs) end = starttime + dt.timedelta(seconds=timestepsecs * (self.timesteps -1)) timeList = date_range(starttime, end, timestepsecs) self.timestepbuffer = zeros((self.maxbuf, len(y), len(x))) self.bufflst = {} self.buffdirty = False globmetadata.update(metadata) prepare_nc(self.ncfile, timeList, x, y, globmetadata, logger, Format=self.Format, EPSG=EPSG,zlib=self.zlib, least_significant_digit=self.least_significant_digit)
def readMap(fileName, fileFormat,logger): """ Read geographical file into memory """ # Open file for binary-reading #pcrdata = _pcrut.readmap(fileName) # mapFormat = gdal.GetDriverByName(fileFormat) # mapFormat.Register() # ds = gdal.Open(fileName) # if ds is None: # logger.error('Could not open ' + fileName + '. Something went wrong!! Shutting down') # sys.exit(1) # # Retrieve geoTransform info # geotrans = ds.GetGeoTransform() # originX = geotrans[0] # originY = geotrans[3] # resX = geotrans[1] # resY = geotrans[5] # cols = ds.RasterXSize # rows = ds.RasterYSize # x = linspace(originX+resX/2,originX+resX/2+resX*(cols-1),cols) # y = linspace(originY+resY/2,originY+resY/2+resY*(rows-1),rows) # # Retrieve raster # RasterBand = ds.GetRasterBand(1) # there's only 1 band, starting from 1 # data = RasterBand.ReadAsArray(0,0,cols,rows) # FillVal = RasterBand.GetNoDataValue() # RasterBand = None # del ds # #ds = None pcrdata = _pcrut.readmap(fileName) x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))),NaN)[0,:] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))),NaN)[:,0] FillVal = float(1E31) data = _pcrut.pcr2numpy(pcrdata,FillVal) return x, y, data, FillVal
def __init__(self,netcdffile,logger,starttime,timesteps,timestepsecs=86400,metadata={},maxbuf=25,least_significant_digit=None): """ Under construction """ def date_range(start, end, tdelta="days"): if tdelta == "days": r = (end+dt.timedelta(days=1)-start).days return [start+dt.timedelta(days=i) for i in range(r)] else: r = (end+dt.timedelta(days=1)-start).days * 24 return [start+dt.timedelta(hours=i) for i in range(r)] self.least_significant_digit=least_significant_digit self.logger = logger # Do not allow a max buffer larger than the number of timesteps self.maxbuf = maxbuf if timesteps >= maxbuf else timesteps self.ncfile = netcdffile self.timesteps = timesteps rows = pcraster._pcraster.clone().nrRows() cols = pcraster._pcraster.clone().nrCols() cellsize = pcraster._pcraster.clone().cellSize() yupper = pcraster._pcraster.clone().north() xupper = pcraster._pcraster.clone().west() x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))),NaN)[0,:] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))),NaN)[:,0] end=starttime + dt.timedelta(seconds=timestepsecs * self.timesteps-1) if timestepsecs == 86400: timeList = date_range(starttime, end, tdelta="days") else: timeList = date_range(starttime, end, tdelta="hours") self.timestepbuffer = zeros((self.maxbuf,len(y),len(x))) self.bufflst={} globmetadata.update(metadata) prepare_nc(self.ncfile,timeList,x,y,globmetadata,logger,Format=netcdfformat)
def __init__(self, netcdffile, logging, vars=[]): """ First try to setup a class read netcdf files (converted with pcr2netcdf.py) netcdffile: file to read the forcing data from logging: python logging object vars: list of variables to get from file """ if os.path.exists(netcdffile): self.dataset = netCDF4.Dataset(netcdffile, mode='r') else: logging.error(os.path.abspath(netcdffile) + " not found!") exit(ValueError) logging.info("Reading input from netCDF file: " + netcdffile + ": " + str(self.dataset).replace('\n', ' ')) self.alldat = {} a = pcr2numpy(cover(0.0), 0.0).flatten() # Determine steps to load in mem based on estimated memory usage floatspermb = 1048576 / 4 maxmb = 40 maxlentime = len(self.dataset.variables['time']) self.maxsteps = minimum(maxmb * len(a) / floatspermb + 1,maxlentime - 1) self.fstep = 0 self.lstep = self.fstep + self.maxsteps self.datetime = self.dataset.variables['time'][:] if hasattr(self.dataset.variables['time'],'units'): self.timeunits=self.dataset.variables['time'].units else: self.timeunits ='Seconds since 1970-01-01 00:00:00' if hasattr(self.dataset.variables['time'], 'calendar'): self.calendar= self.dataset.variables['time'].calendar else: self.calendar ='gregorian' self.datetimelist=netCDF4.num2date(self.datetime,self.timeunits, calendar=self.calendar) try: self.x = self.dataset.variables['x'][:] except: self.x = self.dataset.variables['lon'][:] # Now check Y values to see if we must flip the data try: self.y = self.dataset.variables['y'][:] except: self.y = self.dataset.variables['lat'][:] # test if 1D or 2D array if len(self.y.shape) == 1: if self.y[0] > self.y[-1]: self.flip = False else: self.flip = True else: # not sure if this works self.y = self.y[:][0] if self.y[0] > self.y[-1]: self.flip = False else: self.flip = True x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] #Get average cell size acc = diff(x).mean() * 0.25 if self.flip: (self.latidx,) = logical_and(self.y[::-1] +acc >= y.min(), self.y[::-1] <= y.max() + acc).nonzero() (self.lonidx,) = logical_and(self.x + acc >= x.min(), self.x <= x.max() + acc).nonzero() else: (self.latidx,) = logical_and(self.y +acc >= y.min(), self.y <= y.max() + acc).nonzero() (self.lonidx,) = logical_and(self.x +acc >= x.min(), self.x <= x.max() + acc).nonzero() if len(self.lonidx) != len(x): logging.error("error in determining X coordinates in netcdf...") if len(self.latidx) != len(y): logging.error("error in determining X coordinates in netcdf...") for var in vars: try: self.alldat[var] = self.dataset.variables[var][self.fstep:self.maxsteps] except: self.alldat.pop(var, None) logging.warn("Variable " + var + " not found in netcdf file: " + netcdffile)
mapstackname.append(a) var.append(a) varname.append(a) # Use first timestep as clone-map logger = setlogger('pcr2netcdf.log', 'pcr2netcdf', thelevel=logging.DEBUG) count = 1 below_thousand = count % 1000 above_thousand = count / 1000 clonemapname = str(mapstackname[0] + '%0' + str(8 - len(mapstackname[0])) + '.f.%03.f') % (above_thousand, below_thousand) clonemap = os.path.join(mapstackfolder, clonemapname) _pcrut.setclone(clonemap) x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] start = dt.datetime.strptime(startstr, "%d-%m-%Y %H:%M:%S") end = dt.datetime.strptime(endstr, "%d-%m-%Y %H:%M:%S") if timestepsecs == 86400: timeList = date_range_peryear(start, end, tdelta="days") else: timeList = date_range_peryear(start, end, tdelta="hours") if inifile is not None: inimetadata = getnetcdfmetafromini(inifile) metadata.update(inimetadata)
def __init__(self, netcdffile, logging, vars=[]): """ First try to setup a class read netcdf files (converted with pcr2netcdf.py) netcdffile: file to read the forcing data from logging: python logging object vars: list of variables to get from file """ self.fname = netcdffile if os.path.exists(netcdffile): self.dataset = netCDF4.Dataset(netcdffile, mode="r") else: msg = os.path.abspath(netcdffile) + " not found!" logging.error(msg) raise ValueError(msg) logging.info("Reading state input from netCDF file: " + netcdffile) self.alldat = {} a = pcr2numpy(cover(0.0), 0.0).flatten() # Determine steps to load in mem based on estimated memory usage floatspermb = 1048576 / 4 maxmb = 40 self.maxsteps = maxmb * len(a) / floatspermb + 1 self.fstep = 0 self.lstep = self.fstep + self.maxsteps self.datetime = self.dataset.variables["time"][:] if hasattr(self.dataset.variables["time"], "units"): self.timeunits = self.dataset.variables["time"].units else: self.timeunits = "Seconds since 1970-01-01 00:00:00" if hasattr(self.dataset.variables["time"], "calendar"): self.calendar = self.dataset.variables["time"].calendar else: self.calendar = "gregorian" self.datetimelist = netCDF4.num2date(self.datetime, self.timeunits, calendar=self.calendar) try: self.x = self.dataset.variables["x"][:] except: self.x = self.dataset.variables["lon"][:] # Now check Y values to see if we must flip the data try: self.y = self.dataset.variables["y"][:] except: self.y = self.dataset.variables["lat"][:] # test if 1D or 2D array if len(self.y.shape) == 1: if self.y[0] > self.y[-1]: self.flip = False else: self.flip = True else: # not sure if this works self.y = self.y[:][0] if self.y[0] > self.y[-1]: self.flip = False else: self.flip = True x = _pcrut.pcr2numpy( _pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy( _pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] # Get average cell size acc = ( diff(x).mean() * 0.25 ) # non-exact match needed becuase of possible rounding problems if self.flip: (self.latidx, ) = logical_and( self.y[::-1] + acc >= y.min(), self.y[::-1] <= y.max() + acc).nonzero() (self.lonidx, ) = logical_and(self.x + acc >= x.min(), self.x <= x.max() + acc).nonzero() else: (self.latidx, ) = logical_and(self.y + acc >= y.min(), self.y <= y.max() + acc).nonzero() (self.lonidx, ) = logical_and(self.x + acc >= x.min(), self.x <= x.max() + acc).nonzero() if len(self.lonidx) != len(x): logging.error("error in determining X coordinates in netcdf...") logging.error("model expects: " + str(x.min()) + " to " + str(x.max())) logging.error("got coordinates netcdf: " + str(self.x.min()) + " to " + str(self.x.max())) logging.error("got len from netcdf x: " + str(len(x)) + " expected " + str(len(self.lonidx))) raise ValueError("X coordinates in netcdf do not match model") if len(self.latidx) != len(y): logging.error("error in determining Y coordinates in netcdf...") logging.error("model expects: " + str(y.min()) + " to " + str(y.max())) logging.error("got from netcdf: " + str(self.y.min()) + " to " + str(self.y.max())) logging.error("got len from netcdf y: " + str(len(y)) + " expected " + str(len(self.latidx))) raise ValueError("Y coordinates in netcdf do not match model") for var in vars: try: self.alldat[var] = self.dataset.variables[var][self.fstep:self. maxsteps] except: self.alldat.pop(var, None) logging.warn("Variable " + var + " not found in netcdf file: " + netcdffile)
def __init__(self, netcdffile, logging, vars=[]): """ First try to setup a class read netcdf files (converted with pcr2netcdf.py) netcdffile: file to read the forcing data from logging: python logging object vars: list of variables to get from file """ if os.path.exists(netcdffile): self.dataset = netCDF4.Dataset(netcdffile, mode='r') else: logging.error(os.path.abspath(netcdffile) + " not found!") exit(ValueError) logging.info("Reading input from netCDF file: " + netcdffile + ": " + str(self.dataset).replace('\n', ' ')) self.alldat = {} a = pcr2numpy(cover(0.0), 0.0).flatten() # Determine steps to load in mem based on estimated memory usage floatspermb = 1048576 / 4 maxmb = 40 maxlentime = len(self.dataset.variables['time']) self.maxsteps = minimum(maxmb * len(a) / floatspermb + 1, maxlentime - 1) self.fstep = 0 self.lstep = self.fstep + self.maxsteps self.datetime = self.dataset.variables['time'][:] if hasattr(self.dataset.variables['time'], 'units'): self.timeunits = self.dataset.variables['time'].units else: self.timeunits = 'Seconds since 1970-01-01 00:00:00' if hasattr(self.dataset.variables['time'], 'calendar'): self.calendar = self.dataset.variables['time'].calendar else: self.calendar = 'gregorian' self.datetimelist = netCDF4.num2date(self.datetime, self.timeunits, calendar=self.calendar) try: self.x = self.dataset.variables['x'][:] except: self.x = self.dataset.variables['lon'][:] # Now check Y values to see if we must flip the data try: self.y = self.dataset.variables['y'][:] except: self.y = self.dataset.variables['lat'][:] # test if 1D or 2D array if len(self.y.shape) == 1: if self.y[0] > self.y[-1]: self.flip = False else: self.flip = True else: # not sure if this works self.y = self.y[:][0] if self.y[0] > self.y[-1]: self.flip = False else: self.flip = True x = _pcrut.pcr2numpy( _pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy( _pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] #Get average cell size acc = diff(x).mean() * 0.25 if self.flip: (self.latidx, ) = logical_and( self.y[::-1] + acc >= y.min(), self.y[::-1] <= y.max() + acc).nonzero() (self.lonidx, ) = logical_and(self.x + acc >= x.min(), self.x <= x.max() + acc).nonzero() else: (self.latidx, ) = logical_and(self.y + acc >= y.min(), self.y <= y.max() + acc).nonzero() (self.lonidx, ) = logical_and(self.x + acc >= x.min(), self.x <= x.max() + acc).nonzero() if len(self.lonidx) != len(x): logging.error("error in determining X coordinates in netcdf...") if len(self.latidx) != len(y): logging.error("error in determining X coordinates in netcdf...") for var in vars: try: self.alldat[var] = self.dataset.variables[var][self.fstep:self. maxsteps] except: self.alldat.pop(var, None) logging.warn("Variable " + var + " not found in netcdf file: " + netcdffile)
count = 1 below_thousand = count % 1000 above_thousand = count / 1000 clonemapname = str(mapstackname[0] + "%0" + str(8 - len(mapstackname[0])) + ".f.%03.f") % ( above_thousand, below_thousand, ) clonemap = os.path.join(mapstackfolder, clonemapname) if Singlemap: clonemap = mapstackname[0] _pcrut.setclone(clonemap) x = _pcrut.pcr2numpy(_pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy(_pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] start = dt.datetime.strptime(startstr, "%d-%m-%Y %H:%M:%S") if Singlemap: end = start else: end = dt.datetime.strptime(endstr, "%d-%m-%Y %H:%M:%S") if timestepsecs == 86400: if perYear: timeList = date_range_peryear(start, end, tdelta="days") else: timeList = date_range(start, end, timestepsecs) else:
count = 1 below_thousand = count % 1000 above_thousand = count / 1000 clonemapname = str(mapstackname[0] + '%0' + str(8 - len(mapstackname[0])) + '.f.%03.f') % (above_thousand, below_thousand) clonemap = os.path.join(mapstackfolder, clonemapname) if Singlemap: clonemap = mapstackname[0] if IFormat == 'PCRaster': _pcrut.setclone(clonemap) x = _pcrut.pcr2numpy( _pcrut.xcoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[0, :] y = _pcrut.pcr2numpy( _pcrut.ycoordinate(_pcrut.boolean(_pcrut.cover(1.0))), NaN)[:, 0] else: x, y, data, FillVal = _readMap(clonemap, IFormat, logger) start = dt.datetime.strptime(startstr, "%d-%m-%Y %H:%M:%S") if Singlemap: end = start else: end = dt.datetime.strptime(endstr, "%d-%m-%Y %H:%M:%S") if timestepsecs == 86400: if perYear: timeList = date_range_peryear(start, end, tdelta="days")