def main(): tf.random.set_seed(22) np.random.seed(22) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') z_dim = 100 epochs = 3000000 batch_size = 512 # same as the batch_size of real images d_learning_rate = 0.005 g_learning_rate = 0.002 training = True img_path = glob.glob(r'.\faces\*.jpg') dataset, img_shape, _ = make_anime_dataset(img_path, batch_size) print(dataset, img_shape) sample_picture = next(iter(dataset)) print(sample_picture.shape, tf.reduce_max(sample_picture).numpy(), tf.reduce_min(sample_picture).numpy()) dataset = dataset.repeat() ds_iter = iter(dataset) generator = Generator() generator.build(input_shape=(None, z_dim)) discriminator = Discriminator() discriminator.build(input_shape=(None, 64, 64, 3)) g_optimizer = tf.optimizers.RMSprop(learning_rate=g_learning_rate) d_optimizer = tf.optimizers.RMSprop(learning_rate=d_learning_rate) for epoch in range(epochs): batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.) batch_r = next(ds_iter) # discriminator training with tf.GradientTape() as tape: d_loss, gp = d_loss_func(generator, discriminator, batch_z, batch_r, training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables)) if epoch % 5 == 0: with tf.GradientTape() as tape: g_loss = g_loss_func(generator, discriminator, batch_z, training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print('Current epoch:', epoch, 'd_loss:', float(d_loss), 'g_loss:', float(g_loss), 'gp:', float(gp)) z = tf.random.uniform([100, z_dim]) g_imgs = generator(z, training=False) save_path = os.path.join('images', 'wgan-%d.png' % epoch) save_result(g_imgs.numpy(), 10, save_path, color_mode='P')
def main(batch_size=64, num_epochs=50, save_preds=True, train_method='ganhacks'): str2method = { 'wgan': train_wgan_epoch, 'ganhacks': train_ganhacks_epoch } device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(f"Using {device}") data_dir = 'mnist_data' mean, std = get_mnist_vals(data_location=data_dir) dataloader = torch.utils.data.DataLoader( datasets.MNIST(data_dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize([mean], [std]) ])), batch_size=batch_size, shuffle=True) noisemaker = NoiseMaker(batch_size=batch_size, device=device) discriminator, generator = Discriminator(), Generator() if device.type != 'cpu': discriminator, generator = discriminator.cuda(), generator.cuda() for i in range(num_epochs): print(f"Epoch number {i + 1}") # ncritic is only meaningful if train_method == 'wgan' str2method[train_method](discriminator, generator, dataloader, noisemaker, ncritic=100 if ((i == 0) or (i == 10)) else 5, device=device) # save some predictions if save_preds: with torch.no_grad(): generator.eval() noise = noisemaker() output = generator(noise).cpu().numpy() # denormalize output = (output * std) + mean np.save(f"{train_method}_generator_output.npy", output)
def _train_initialize_variables(model_str, model_params, opt_params, cuda): """Helper function that just initializes everything at the beginning of the train function""" # Params passed in as dict to model. if model_str == 'WGAN': D = WDisc(model_params) G = WGen(model_params) D.train() G.train() elif model_str == 'WDCGAN': D = WDCDisc(model_params) G = WDCGen(model_params) D.train() G.train() else: raise ValueError('Name unknown: %s' % model_str) d_optimizer = init_optimizer(opt_params, D) g_optimizer = init_optimizer(opt_params, G) if cuda: D = D.cuda() G = G.cuda() return G, D, g_optimizer, d_optimizer
transforms.Normalize([0.5], [0.5]), ]) train_dataset = datasets.CIFAR10(train_data_path, train=True, download=True, transform=my_trans) test_dataset = datasets.CIFAR10(test_data_path, train=False, download=True, transform=my_trans) train_dataloader = DataLoader(train_dataset, batch_size=batchs, shuffle=True) # test_dataloader = DataLoader(test_dataset,batch_size=batch,shuffle=False) #Initialize generator and discriminator generator = Generator(latent, img_shape) discriminator = Discriminator(img_shape) if cuda: generator.cuda() discriminator.cuda() #Optimizers optimizer_G = optim.RMSprop(generator.parameters(), lr=learning_rate) optimizer_D = optim.RMSprop(discriminator.parameters(), lr=learning_rate) #Training score_tr = np.zeros((epochs, 2)) batch_done = 0 total_errG = 0 total_errD = 0 count = 0 for epoch in range(epochs):
# Create the generator netG = Generator(cfg.ngpu).to(device) # Handle multi-gpu if desired if (device.type == 'cuda') and (cfg.ngpu > 1): netG = nn.DataParallel(netG, list(range(cfg.ngpu))) # Initialize all weights to mean=0, std=0.2. netG.apply(weights_init) # Print the model print(netG) # Create the Discriminator netD = Discriminator(cfg.ngpu).to(device) # Handle multi-gpu if desired if (device.type == 'cuda') and (cfg.ngpu > 1): netD = nn.DataParallel(netD, list(range(cfg.ngpu))) # Initialize all weights to mean=0, std=0.2. netD.apply(weights_init) # Print the model print(netD) # Create batch of latent vectors used to visualize progression of the generator fixed_noise = torch.randn(64, cfg.nz, 1, 1, device=device) # Setup RMSprop optimizers for both G and D
train=True, download=True, transform=my_trans) test_dataset = datasets.CIFAR10(test_data_path, train=False, download=True, transform=my_trans) train_dataloader = DataLoader(train_dataset, batch_size=batchs, shuffle=True, num_workers=int(2)) # test_dataloader = DataLoader(test_dataset,batch_size=batch,shuffle=False) #Initialize generator and discriminator generator = Generator(latent, img_shape) discriminator = Discriminator(img_shape) if cuda: generator.cuda() discriminator.cuda() #Optimizers optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate, betas=(b1, b2)) optimizer_D = optim.Adam(discriminator.parameters(), lr=learning_rate, betas=(b1, b2)) #Training score_tr = np.zeros((epochs, 2)) batch_done = 0
#Models file_base = "../../outputs/wgan_content_loss/" load = True # load = False device_1 = torch.device("cuda:0") device_2 = torch.device("cuda:1") device_ids = [0] if load: generator = torch.load(file_base + "generator_2loss.pt") discriminator = torch.load(file_base + "discriminator_2loss.pt") else: generator = Generator(img_shape) discriminator = Discriminator(img_shape) generator = nn.DataParallel(generator, device_ids=device_ids).type(dtype) discriminator = nn.DataParallel(discriminator, device_ids=device_ids).type(dtype) feature_extractor = FeatureExtractor().type(dtype) # Optimizers g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2)) d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2)) ''' Load Data ''' '''
def main(): tf.random.set_seed(233) np.random.seed(233) assert tf.__version__.startswith('2.') # hyper parameters z_dim = 100 epochs = 3000000 batch_size = 512 learning_rate = 0.0005 is_training = True img_path = glob.glob(r'./faces/*.jpg') assert len(img_path) > 0 dataset, img_shape, _ = make_anime_dataset(img_path, batch_size) print(dataset, img_shape) sample = next(iter(dataset)) print(sample.shape, tf.reduce_max(sample).numpy(), tf.reduce_min(sample).numpy()) dataset = dataset.repeat() db_iter = iter(dataset) generator = None USE_LOADED = False if (USE_LOADED and os.path.exists('./model.tf')): print('加载模型,继续上次训练') generator = tf.keras.models.load_model('./model.tf', compile=True) else: print('未找到保存的模型,重新开始训练') generator = Generator() generator.build(input_shape=(None, z_dim)) discriminator = Discriminator() discriminator.build(input_shape=(None, 64, 64, 3)) g_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) for epoch in range(epochs): for _ in range(5): batch_z = tf.random.normal([batch_size, z_dim]) batch_x = next(db_iter) # train D with tf.GradientTape() as tape: d_loss, gp = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(grads, discriminator.trainable_variables)) batch_z = tf.random.normal([batch_size, z_dim]) with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss), 'gp:', float(gp)) z = tf.random.normal([100, z_dim]) fake_image = generator(z, training=False) img_path = os.path.join('images', 'wgan-%d.png' % epoch) save_result(fake_image.numpy(), 10, img_path, color_mode='P') # 子类实现的网络保存成h5格式不支持 参见 https://github.com/tensorflow/tensorflow/issues/29545 generator.predict( z ) # 不调用一下,直接save 会报错,参见这里 https://github.com/tensorflow/tensorflow/issues/31057 generator.save('./model.tf', overwrite=True, save_format="tf")