Пример #1
0
 def test_save(self):
     filename = get_file_name()
     df = AudioDataFile()
     df.load(filename, formatter=AIFFormatter())
     df.save("tmp.h5", formatter=HDF5Formatter())
     df2 = AudioDataFile().load("tmp.h5", formatter=HDF5Formatter())
     assert df2.duration.seconds > 0
def test_scale():
    file_name = get_file_name()
    df = AudioDataFile().load(file_name, formatter=AIFFormatter())
    p = Scale()
    p.parameters["data"] = df
    result = p.transform()
    assert p.description != ""
    assert type(result) is df.__class__
Пример #3
0
def test_identity():
    file_name = get_file_name()
    df = AudioDataFile().load(file_name, formatter=AIFFormatter())
    f = Identity()
    f.parameters["data"] = df
    t = f.transform()
    np.testing.assert_allclose(df.data.values.ravel(), t.data.values.ravel())
    assert f.description != ""
    assert t.data.values.ndim == 2
Пример #4
0
 def test_add_remove_datafile(self):
     filename = get_file_name()
     df = AudioDataFile()
     df.load(filename,
                  formatter=AIFFormatter())
     ds = OneDataFileOut()
     ds.add_data_file(df)
     assert len(ds.datafiles) == 1
     ds.remove_data_file(df)
     assert len(ds.datafiles) == 0
Пример #5
0
def test_skewness():
    file_name = get_file_name()
    df = AudioDataFile().load(file_name, formatter=AIFFormatter())
    df.data -= df.data.mean()
    f = Skewness()
    f.parameters["data"] = df
    t = f.transform()
    assert t.data.values.shape[1] == 1
    assert f.description != ""
    assert t.data.values.ndim == 2
def test_sliding_windows():
    filename = get_file_name()
    p = SlidingWindows()
    p.parameters["sliding_window_width"] = "13s"
    p.parameters["overlap"] = 0.12
    df = AudioDataFile()
    df.load(filename, formatter=AIFFormatter())
    p.parameters["data"] = df
    new_df = p.transform()
    new_df.get_windows_data_frame()
    assert p.description != ""
Пример #7
0
def test_spectral_frames():
    file_name = get_file_name()
    df = AudioDataFile().load(file_name, formatter=AIFFormatter())
    df.data -= df.data.mean()
    f = SpectralFrames()
    f.parameters["sampling_rate"] = df.sampling_rate
    f.parameters["data"] = df
    t = f.transform()
    assert t.data.values.shape[0] == 1
    assert f.description != ""
    assert t.data.values.ndim == 2
Пример #8
0
def test_mfcc():
    file_name = get_file_name()
    df = AudioDataFile().load(file_name, formatter=AIFFormatter())
    df.data -= df.data.mean()
    f = MFCC()
    f.parameters["sampling_rate"] = df.sampling_rate
    f.parameters["n_components"] = 25
    f.parameters["data"] = df
    t = f.transform()
    assert t.data.values.shape[1] == 25
    assert f.description != ""
    assert t.data.values.ndim == 2
Пример #9
0
 def test_load(self):
     filename = get_file_name()
     df = AudioDataFile()
     # No attribute data
     assert str(df) == "AudioDataFile"
     with pytest.raises(RuntimeError):
         df.duration
     with pytest.raises(RuntimeError):
         df.start_time
     with pytest.raises(RuntimeError):
         df.end_time
     df.load(filename, formatter=AIFFormatter())
     assert df.duration.seconds > 0
     assert str(df) == "AudioDataFile (0 days 00:14:59.999500)"
Пример #10
0
    def test_read(self):
        filename = get_file_name()
        formatter = AIFFormatter()
        df = formatter.read(filename)
        assert type(df) is pd.Series
        assert len(df) > 0
        assert type(df.index) is pd.DatetimeIndex

        new_filename = "same_file_new_name.aif"
        rename(filename, "same_file_new_name.aif")
        df = formatter.read(new_filename)
        assert type(df) is pd.Series
        assert len(df) > 0
        assert type(df.index) is pd.RangeIndex
Пример #11
0
 def test_sampling_rate(self):
     filename = get_file_name()
     df = AudioDataFile()
     assert df.sampling_rate is None
     df.load(filename, formatter=AIFFormatter())
     assert df.sampling_rate > 0
Пример #12
0
 def test_read_metadata(self):
     filename = get_file_name()
     formatter = AIFFormatter()
     metadata = formatter.read_metadata(filename)
     assert type(metadata) is dict