def run_example(stats=False): encoder = OneHotEncoder({'animal': 2, 'color': 1}, ['weight', 'height']) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9, 'extra_junk': 'blah'}, {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6}, {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5}, {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}] encoder.load_from_data_stream(data) encoded_data = encoder.encode_data(data) data_decoded = encoder.decode_data(encoded_data) expected = [{'height': 88.9, 'weight': 6.0, 'animal': 'cat', 'color': 'blue'}, {'height': 44.9, 'weight': 3.0, 'animal': 'cat', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 2.5, 'weight': 5.5, 'color': 'UNKNOWN_CATEGORICAL_LEVEL', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 3233.2, 'weight': 7.0, 'color': 'blue', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 666.6, 'weight': 2.0, 'animal': 'cat', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 55.5, 'weight': 0.0, 'animal': 'mouse', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 33, 'weight': 99.9, 'animal': 'mouse', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}] assert data_decoded == expected # add number stats? if stats: encoder.add_numeric_stats(data) # check the package packaged = encoder.package_data() return packaged
def test_load_from_data_encodes_data(): encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100) data = [{'animal': 'cat', 'color': 'blue', 'weight': 1.0}, {'animal': 'cat', 'color': 'red', 'weight': 3.0}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0}, {'animal': 'cat', 'color': 'blue', 'weight': 2.0}, {'animal': 'cat', 'color': 'blue', 'weight': 0.0}, {'animal': 'cat', 'color': 'blue', 'weight': 99.9}] encoder.load_from_data_stream(data) encoded_data = [encoder.encode_row(row) for row in data] assert len(encoded_data) == len(data) assert len(encoded_data[0]) != len(data[0])
def test_load_from_data(): encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100) data = [{'animal': 'cat', 'color': 'blue', 'weight': 1.0}, {'animal': 'cat', 'color': 'red', 'weight': 3.0}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0}, {'animal': 'cat', 'color': 'blue', 'weight': 2.0}, {'animal': 'cat', 'color': 'blue', 'weight': 0.0}, {'animal': 'cat', 'color': 'blue', 'weight': 99.9}] assert encoder.encoder is None assert encoder.decoder is None assert encoder.one_hot_encoder_dicts is None encoder.load_from_data_stream(data) assert encoder.encoder is not None assert encoder.decoder is not None assert encoder.one_hot_encoder_dicts is not None
def test_inversion_more_complicated_with_max_levels(): encoder = OneHotEncoder({'animal': 2, 'color': 2}, ['weight', 'height']) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9}, {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6}, {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5}, {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}] encoder.load_from_data_stream(data) encoded_data = encoder.encode_data(data) data_decoded = encoder.decode_data(encoded_data) expected = [{'height': 88.9, 'weight': 6.0, 'animal': 'cat', 'color': 'blue'}, {'height': 44.9, 'weight': 3.0, 'animal': 'cat', 'color': 'red'}, {'height': 2.5, 'weight': 5.5, 'color': 'UNKNOWN_CATEGORICAL_LEVEL', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 3233.2, 'weight': 7.0, 'color': 'blue', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 666.6, 'weight': 2.0, 'animal': 'cat', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}, {'height': 55.5, 'weight': 0.0, 'animal': 'mouse', 'color': 'red'}, {'height': 33, 'weight': 99.9, 'animal': 'mouse', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}] assert data_decoded == expected
def get_round_trip_decoded(stats=False, omit_cols=None): encoder = OneHotEncoder({'animal': 2, 'color': 1}, ['weight', 'height'], omit_cols=omit_cols) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9, 'extra_junk': 'blah'}, {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6}, {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5}, {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}] encoder.load_from_data_stream(data) encoded_data = encoder.encode_data(data) data_decoded = encoder.decode_data(encoded_data) # add number stats? if stats: encoder.add_numeric_stats(data) # check the package packaged = encoder.package_data() return data_decoded, packaged
def test_inversion_more_complicated(): encoder = OneHotEncoder(['animal', 'color'], ['weight', 'height'], max_levels_default=100) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9}, {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6}, {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5}, {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}] encoder.load_from_data_stream(data) encoded_data = encoder.encode_data(data) data_decoded = encoder.decode_data(encoded_data) assert data_decoded == data data_recoded = encoder.encode_data(data_decoded) assert data_recoded == encoded_data
def test_inversion(): encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0}, {'animal': 'cat', 'color': 'red', 'weight': 3.0}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0}, {'animal': 'mouse', 'color': 'purple', 'weight': 0.0}, {'animal': 'mouse', 'color': 'black', 'weight': 99.9}] encoder.load_from_data_stream(data) encoded_data = encoder.encode_data(data) data_decoded = encoder.decode_data(encoded_data) assert data_decoded == data data_recoded = encoder.encode_data(data_decoded) assert data_recoded == encoded_data
def test_html_form(): encoder = OneHotEncoder({'animal': 2, 'color': 1}, ['weight', 'height']) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9, 'extra_junk': 'blah'}, {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6}, {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5}, {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}] encoder.load_from_data_stream(data) package = encoder.package_data() expected = {'max_levels_default': 10000, 'numeric_cols': ['weight', 'height'], 'categorical_n_levels_dict': {'animal': 2, 'color': 1}, 'one_hot_encoder_dicts': {'animal': {'cat': 0, 'mouse': 1}, 'color': {'blue': 0}}, 'numeric_stats': None, 'omit_cols': None} assert package == expected html_header, form_div = encoder.get_form_html_elements() form_tags = ['id="form"', 'schema', 'alpaca', 'script'] for tag in form_tags: assert tag in form_div header_tags = ['jquery', 'bootstrap', 'alpaca', 'script'] for tag in header_tags: assert tag in html_header html_page = encoder.get_form_html_page() assert "<html" in html_page assert html_header in html_page assert form_div in html_page
def test_init(): encoder = OneHotEncoder({'foo': 3, 'bar': 7}, ['buzz_numeric']) assert encoder.numeric_cols == ['buzz_numeric'] assert encoder.categorical_n_levels_dict == {'foo': 3, 'bar': 7}
def test_load_from_data_encodes_data_correctly(): encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0}, {'animal': 'cat', 'color': 'red', 'weight': 3.0}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0}, {'animal': 'mouse', 'color': 'purple', 'weight': 0.0}, {'animal': 'mouse', 'color': 'black', 'weight': 99.9}] encoder.load_from_data_stream(data) encoded_data = [encoder.encode_row(row) for row in data] assert len(encoded_data) == len(data) assert len(encoded_data[0]) != len(data[0]) first_row = encoded_data[0] expected = [6.0, # weight is numeric and comes first 1.0, # animal is first categorical and cat is the most common, first row is cat 0.0, # animal, mouse is next most common, not a mouse 0.0, # animal, dog and fish tied for frequency but dog first alphabetically 0.0, # animal, fish, cat is not a fish 1.0, # color is next categorical alphabetically and blue is most common, first row blue 0.0, # black 0.0, # magenta 0.0, # purple 0.0, # red 0.0] # yellow assert first_row == expected second_row = encoded_data[1] expected = [3.0, # weight is numeric and comes first 1.0, # animal is first categorical and cat is the most common, first row is cat 0.0, # animal, mouse is next most common, not a mouse 0.0, # animal, dog and fish tied for frequency but dog first alphabetically 0.0, # animal, fish, cat is not a fish 0.0, # color is next categorical alphabetically and blue is most common, first row blue 0.0, # black next alphabetically for ones with frequency 1 0.0, # magenta next 0.0, # purple 1.0, # red, this is red 0.0] # yellow assert second_row == expected last_row = encoded_data[-1] expected = [99.9, # weight is numeric and comes first 0.0, # animal is first categorical and cat is the most common, first row is cat 1.0, # animal, mouse is next most common, not a mouse 0.0, # animal, dog and fish tied for frequency but dog first alphabetically 0.0, # animal, fish, cat is not a fish 0.0, # color is next categorical alphabetically and blue is most common, first row blue 1.0, # black next alphabetically for ones with frequency 1, this one black 0.0, # magenta next 0.0, # purple 0.0, # red 0.0] # yellow expected_total = [[6.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [5.5, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [7.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [99.9, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]] assert encoded_data == expected_total
def test_init_empty(): OneHotEncoder([], [])
def test_init_do_not_ignore_default(): encoder = OneHotEncoder(['foo', 'bar'], ['buzz_numeric'], max_levels_default=999) assert encoder.numeric_cols == ['buzz_numeric'] assert encoder.categorical_n_levels_dict == {'foo': 999, 'bar': 999}
def test_save_load(): filename = NamedTemporaryFile().name encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100) data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0}, {'animal': 'cat', 'color': 'red', 'weight': 3.0}, {'animal': 'dog', 'color': 'yellow', 'weight': 5.5}, {'animal': 'fish', 'color': 'blue', 'weight': 7.0}, {'animal': 'cat', 'color': 'magenta', 'weight': 2.0}, {'animal': 'mouse', 'color': 'purple', 'weight': 0.0}, {'animal': 'mouse', 'color': 'black', 'weight': 99.9}] encoder.load_from_data_stream(data) encoded_data = encoder.encode_data(data) encoder.save(filename) encoder_from_file = OneHotEncoder([], []) encoder_from_file.load_from_file(filename) encoded_data_from_file = encoder_from_file.encode_data(data) assert encoded_data == encoded_data_from_file