Пример #1
0
def unwise_coadds(onegal,
                  galaxy=None,
                  radius_mosaic=30,
                  radius_mask=None,
                  pixscale=2.75,
                  ref_pixscale=0.262,
                  output_dir=None,
                  unwise_dir=None,
                  verbose=False,
                  log=None,
                  centrals=True):
    '''Generate custom unWISE cutouts.
    
    radius_mosaic and radius_mask in arcsec
    
    pixscale: WISE pixel scale in arcsec/pixel; make this smaller than 2.75
    to oversample.

    '''
    import fitsio
    import matplotlib.pyplot as plt

    from astrometry.util.util import Tan
    from astrometry.util.fits import fits_table
    from astrometry.libkd.spherematch import match_radec
    from astrometry.util.resample import resample_with_wcs, ResampleError
    from wise.forcedphot import unwise_tiles_touching_wcs
    from wise.unwise import get_unwise_tractor_image
    from tractor import Tractor, Image, NanoMaggies

    from legacypipe.survey import imsave_jpeg
    from legacypipe.catalog import read_fits_catalog

    if galaxy is None:
        galaxy = 'galaxy'

    if output_dir is None:
        output_dir = '.'

    if unwise_dir is None:
        unwise_dir = os.environ.get('UNWISE_COADDS_DIR')

    if radius_mask is None:
        radius_mask = radius_mosaic
        radius_search = 5.0  # [arcsec]
    else:
        radius_search = radius_mask

    # Initialize the WCS object.
    W = H = np.ceil(2 * radius_mosaic / pixscale).astype('int')  # [pixels]
    targetwcs = Tan(onegal['RA'], onegal['DEC'], (W + 1) / 2.0, (H + 1) / 2.0,
                    -pixscale / 3600.0, 0.0, 0.0, pixscale / 3600.0, float(W),
                    float(H))

    # Read the custom Tractor catalog.
    tractorfile = os.path.join(output_dir, '{}-tractor.fits'.format(galaxy))
    if not os.path.isfile(tractorfile):
        print('Missing Tractor catalog {}'.format(tractorfile),
              flush=True,
              file=log)
        return 0
    primhdr = fitsio.read_header(tractorfile)

    cat = fits_table(tractorfile)
    print('Read {} sources from {}'.format(len(cat), tractorfile),
          flush=True,
          file=log)

    keep = np.ones(len(cat)).astype(bool)
    if centrals:
        # Find the large central galaxy and mask out (ignore) all the models
        # which are within its elliptical mask.

        # This algorithm will have to change for mosaics not centered on large
        # galaxies, e.g., in galaxy groups.
        m1, m2, d12 = match_radec(cat.ra,
                                  cat.dec,
                                  onegal['RA'],
                                  onegal['DEC'],
                                  radius_search / 3600.0,
                                  nearest=False)
        if len(m1) == 0:
            print('No central galaxies found at the central coordinates!',
                  flush=True,
                  file=log)
        else:
            pixfactor = ref_pixscale / pixscale  # shift the optical Tractor positions
            for mm in m1:
                morphtype = cat.type[mm].strip()
                if morphtype == 'EXP' or morphtype == 'COMP':
                    e1, e2, r50 = cat.shapeexp_e1[mm], cat.shapeexp_e2[
                        mm], cat.shapeexp_r[mm]  # [arcsec]
                elif morphtype == 'DEV' or morphtype == 'COMP':
                    e1, e2, r50 = cat.shapedev_e1[mm], cat.shapedev_e2[
                        mm], cat.shapedev_r[mm]  # [arcsec]
                else:
                    r50 = None

                if r50:
                    majoraxis = r50 * 5 / pixscale  # [pixels]
                    ba, phi = SGA.misc.convert_tractor_e1e2(e1, e2)
                    these = SGA.misc.ellipse_mask(W / 2, W / 2, majoraxis,
                                                  ba * majoraxis,
                                                  np.radians(phi),
                                                  cat.bx * pixfactor,
                                                  cat.by * pixfactor)
                    if np.sum(these) > 0:
                        #keep[these] = False
                        pass
                print('Hack!')
                keep[mm] = False

            #srcs = read_fits_catalog(cat)
            #_srcs = np.array(srcs)[~keep].tolist()
            #mod = SGA.misc.srcs2image(_srcs, ConstantFitsWcs(targetwcs), psf_sigma=3.0)
            #import matplotlib.pyplot as plt
            ##plt.imshow(mod, origin='lower') ; plt.savefig('junk.png')
            #plt.imshow(np.log10(mod), origin='lower') ; plt.savefig('junk.png')
            #pdb.set_trace()

    srcs = read_fits_catalog(cat)
    for src in srcs:
        src.freezeAllBut('brightness')
    #srcs_nocentral = np.array(srcs)[keep].tolist()
    cat_nocentral = cat[keep]

    ## Find and remove all the objects within XX arcsec of the target
    ## coordinates.
    #m1, m2, d12 = match_radec(T.ra, T.dec, onegal['RA'], onegal['DEC'], 5/3600.0, nearest=False)
    #if len(d12) == 0:
    #    print('No matching galaxies found -- probably not what you wanted.')
    #    #raise ValueError
    #    nocentral = np.ones(len(T)).astype(bool)
    #else:
    #    nocentral = ~np.isin(T.objid, T[m1].objid)
    #T_nocentral = T[nocentral]

    # Find and read the overlapping unWISE tiles.  Assume the targetwcs is
    # axis-aligned and that the edge midpoints yield the RA, Dec limits (true
    # for TAN).  Note: the way the roiradec box is used, the min/max order
    # doesn't matter.
    r, d = targetwcs.pixelxy2radec(np.array([1, W, W / 2, W / 2]),
                                   np.array([H / 2, H / 2, 1, H]))
    roiradec = [r[0], r[1], d[2], d[3]]

    tiles = unwise_tiles_touching_wcs(targetwcs)

    wbands = [1, 2, 3, 4]
    wanyband = 'w'
    vega_to_ab = dict(w1=2.699, w2=3.339, w3=5.174, w4=6.620)

    # Convert the AB WISE fluxes in the Tractor catalog to Vega nanomaggies so
    # they're consistent with the coadds, below.
    for band in wbands:
        f = cat.get('flux_w{}'.format(band))
        e = cat.get('flux_ivar_w{}'.format(band))
        print('Setting negative fluxes equal to zero!')
        f[f < 0] = 0
        #f[f/e < 3] = 0
        f *= 10**(0.4 * vega_to_ab['w{}'.format(band)])

    coimgs = [np.zeros((H, W), np.float32) for b in wbands]
    comods = [np.zeros((H, W), np.float32) for b in wbands]
    comods_nocentral = [np.zeros((H, W), np.float32) for b in wbands]
    con = [np.zeros((H, W), np.uint8) for b in wbands]

    for iband, band in enumerate(wbands):
        for ii, src in enumerate(srcs):
            src.setBrightness(
                NanoMaggies(
                    **{wanyband: cat.get('flux_w{}'.format(band))[ii]}))
        srcs_nocentral = np.array(srcs)[keep].tolist()
        #srcs_nocentral = np.array(srcs)[nocentral].tolist()

        # The tiles have some overlap, so for each source, keep the fit in the
        # tile whose center is closest to the source.
        for tile in tiles:
            #print('Reading tile {}'.format(tile.coadd_id))
            tim = get_unwise_tractor_image(unwise_dir,
                                           tile.coadd_id,
                                           band,
                                           bandname=wanyband,
                                           roiradecbox=roiradec)
            if tim is None:
                print('Actually, no overlap with tile {}'.format(
                    tile.coadd_id))
                continue
            print('Read image {} with shape {}'.format(tile.coadd_id,
                                                       tim.shape))

            def _unwise_mod(tim, use_cat, use_srcs, margin=10):
                # Select sources in play.
                wisewcs = tim.wcs.wcs
                timH, timW = tim.shape
                ok, x, y = wisewcs.radec2pixelxy(use_cat.ra, use_cat.dec)
                x = (x - 1.).astype(np.float32)
                y = (y - 1.).astype(np.float32)
                I = np.flatnonzero((x >= -margin) * (x < timW + margin) *
                                   (y >= -margin) * (y < timH + margin))
                #print('Found {} sources within the image + margin = {} pixels'.format(len(I), margin))

                subcat = [use_srcs[i] for i in I]
                tractor = Tractor([tim], subcat)
                mod = tractor.getModelImage(0)
                return mod

            mod = _unwise_mod(tim, cat, srcs)
            mod_nocentral = _unwise_mod(tim, cat_nocentral, srcs_nocentral)

            try:
                Yo, Xo, Yi, Xi, nil = resample_with_wcs(targetwcs, tim.wcs.wcs)
            except ResampleError:
                continue
            if len(Yo) == 0:
                continue

            # The models are already in AB nanomaggies, but the tiles / tims are
            # in Vega nanomaggies, so convert them here.
            coimgs[iband][Yo, Xo] += tim.getImage()[Yi, Xi]
            comods[iband][Yo, Xo] += mod[Yi, Xi]
            comods_nocentral[iband][Yo, Xo] += mod_nocentral[Yi, Xi]
            con[iband][Yo, Xo] += 1

        ## Convert back to nanomaggies.
        #vega2ab = vega_to_ab['w{}'.format(band)]
        #coimgs[iband] *= 10**(-0.4 * vega2ab)
        #comods[iband] *= 10**(-0.4 * vega2ab)
        #comods_nocentral[iband] *= 10**(-0.4 * vega2ab)

    for img, mod, mod_nocentral, n in zip(coimgs, comods, comods_nocentral,
                                          con):
        img /= np.maximum(n, 1)
        mod /= np.maximum(n, 1)
        mod_nocentral /= np.maximum(n, 1)

    coresids = [img - mod for img, mod in list(zip(coimgs, comods))]

    # Subtract the model image which excludes the central (comod_nocentral)
    # from the data (coimg) to isolate the light of the central
    # (coimg_central).
    coimgs_central = [
        img - mod for img, mod in list(zip(coimgs, comods_nocentral))
    ]

    # Write out the final images with and without the central and converted into
    # AB nanomaggies.
    for coadd, imtype in zip((coimgs, comods, comods_nocentral),
                             ('image', 'model', 'model-nocentral')):
        for img, band in zip(coadd, wbands):
            vega2ab = vega_to_ab['w{}'.format(band)]
            fitsfile = os.path.join(
                output_dir, '{}-{}-W{}.fits'.format(galaxy, imtype, band))
            if verbose:
                print('Writing {}'.format(fitsfile))
            fitsio.write(fitsfile, img * 10**(-0.4 * vega2ab), clobber=True)

    # Generate color WISE images.
    kwa = dict(mn=-1, mx=100, arcsinh=0.5)
    #kwa = dict(mn=-0.05, mx=1., arcsinh=0.5)
    #kwa = dict(mn=-0.1, mx=2., arcsinh=None)

    for imgs, imtype in zip(
        (coimgs, comods, coresids, comods_nocentral, coimgs_central),
        ('image', 'model', 'resid', 'model-nocentral', 'image-central')):
        rgb = _unwise_to_rgb(imgs[:2], **kwa)  # W1, W2
        jpgfile = os.path.join(output_dir,
                               '{}-{}-W1W2.jpg'.format(galaxy, imtype))
        if verbose:
            print('Writing {}'.format(jpgfile))
        imsave_jpeg(jpgfile, rgb, origin='lower')

    return 1
Пример #2
0
def wise_cutouts(ra, dec, radius, ps, pixscale=2.75, tractor_base=".", unwise_dir="unwise-coadds"):
    """
    radius in arcsec.
    pixscale: WISE pixel scale in arcsec/pixel;
        make this smaller than 2.75 to oversample.
    """

    npix = int(np.ceil(radius / pixscale))
    print("Image size:", npix)
    W = H = npix
    pix = pixscale / 3600.0
    wcs = Tan(ra, dec, (W + 1) / 2.0, (H + 1) / 2.0, -pix, 0.0, 0.0, pix, float(W), float(H))
    # Find DECaLS bricks overlapping
    decals = Decals()
    B = bricks_touching_wcs(wcs, decals=decals)
    print("Found", len(B), "bricks overlapping")

    TT = []
    for b in B.brickname:
        fn = os.path.join(tractor_base, "tractor", b[:3], "tractor-%s.fits" % b)
        T = fits_table(fn)
        print("Read", len(T), "from", b)
        primhdr = fitsio.read_header(fn)
        TT.append(T)
    T = merge_tables(TT)
    print("Total of", len(T), "sources")
    T.cut(T.brick_primary)
    print(len(T), "primary")
    margin = 20
    ok, xx, yy = wcs.radec2pixelxy(T.ra, T.dec)
    I = np.flatnonzero((xx > -margin) * (yy > -margin) * (xx < W + margin) * (yy < H + margin))
    T.cut(I)
    print(len(T), "within ROI")

    # Pull out DECaLS coadds (image, model, resid).
    dwcs = wcs.scale(2.0 * pixscale / 0.262)
    dh, dw = dwcs.shape
    print("DECaLS resampled shape:", dh, dw)
    tags = ["image", "model", "resid"]
    coimgs = [np.zeros((dh, dw, 3), np.uint8) for t in tags]

    for b in B.brickname:
        fn = os.path.join(tractor_base, "coadd", b[:3], b, "decals-%s-image-r.fits" % b)
        bwcs = Tan(fn)
        try:
            Yo, Xo, Yi, Xi, nil = resample_with_wcs(dwcs, bwcs)
        except ResampleError:
            continue
        if len(Yo) == 0:
            continue
        print("Resampling", len(Yo), "pixels from", b)
        xl, xh, yl, yh = Xi.min(), Xi.max(), Yi.min(), Yi.max()
        print(
            "python legacypipe/runbrick.py -b %s --zoom %i %i %i %i --outdir cluster --pixpsf --splinesky --pipe --no-early-coadds"
            % (b, xl - 5, xh + 5, yl - 5, yh + 5)
            + " -P 'pickles/cluster-%(brick)s-%%(stage)s.pickle'"
        )
        for i, tag in enumerate(tags):
            fn = os.path.join(tractor_base, "coadd", b[:3], b, "decals-%s-%s.jpg" % (b, tag))
            img = plt.imread(fn)
            img = np.flipud(img)
            coimgs[i][Yo, Xo, :] = img[Yi, Xi, :]

    tt = dict(image="Image", model="Model", resid="Resid")
    for img, tag in zip(coimgs, tags):
        plt.clf()
        dimshow(img, ticks=False)
        plt.title("DECaLS grz %s" % tt[tag])
        ps.savefig()

    # Find unWISE tiles overlapping
    tiles = unwise_tiles_touching_wcs(wcs)
    print("Cut to", len(tiles), "unWISE tiles")

    # Here we assume the targetwcs is axis-aligned and that the
    # edge midpoints yield the RA,Dec limits (true for TAN).
    r, d = wcs.pixelxy2radec(np.array([1, W, W / 2, W / 2]), np.array([H / 2, H / 2, 1, H]))
    # the way the roiradec box is used, the min/max order doesn't matter
    roiradec = [r[0], r[1], d[2], d[3]]

    ra, dec = T.ra, T.dec

    T.shapeexp = np.vstack((T.shapeexp_r, T.shapeexp_e1, T.shapeexp_e2)).T
    T.shapedev = np.vstack((T.shapedev_r, T.shapedev_e1, T.shapedev_e2)).T
    srcs = read_fits_catalog(T, ellipseClass=EllipseE)

    wbands = [1, 2]
    wanyband = "w"

    for band in wbands:
        T.wise_flux[:, band - 1] *= 10.0 ** (primhdr["WISEAB%i" % band] / 2.5)

    coimgs = [np.zeros((H, W), np.float32) for b in wbands]
    comods = [np.zeros((H, W), np.float32) for b in wbands]
    con = [np.zeros((H, W), np.uint8) for b in wbands]

    for iband, band in enumerate(wbands):
        print("Photometering WISE band", band)
        wband = "w%i" % band

        for i, src in enumerate(srcs):
            # print('Source', src, 'brightness', src.getBrightness(), 'params', src.getBrightness().getParams())
            # src.getBrightness().setParams([T.wise_flux[i, band-1]])
            src.setBrightness(NanoMaggies(**{wanyband: T.wise_flux[i, band - 1]}))
            # print('Set source brightness:', src.getBrightness())

        # The tiles have some overlap, so for each source, keep the
        # fit in the tile whose center is closest to the source.
        for tile in tiles:
            print("Reading tile", tile.coadd_id)

            tim = get_unwise_tractor_image(unwise_dir, tile.coadd_id, band, bandname=wanyband, roiradecbox=roiradec)
            if tim is None:
                print("Actually, no overlap with tile", tile.coadd_id)
                continue
            print("Read image with shape", tim.shape)

            # Select sources in play.
            wisewcs = tim.wcs.wcs
            H, W = tim.shape
            ok, x, y = wisewcs.radec2pixelxy(ra, dec)
            x = (x - 1.0).astype(np.float32)
            y = (y - 1.0).astype(np.float32)
            margin = 10.0
            I = np.flatnonzero((x >= -margin) * (x < W + margin) * (y >= -margin) * (y < H + margin))
            print(len(I), "within the image + margin")

            subcat = [srcs[i] for i in I]
            tractor = Tractor([tim], subcat)
            mod = tractor.getModelImage(0)

            # plt.clf()
            # dimshow(tim.getImage(), ticks=False)
            # plt.title('WISE %s %s' % (tile.coadd_id, wband))
            # ps.savefig()

            # plt.clf()
            # dimshow(mod, ticks=False)
            # plt.title('WISE %s %s' % (tile.coadd_id, wband))
            # ps.savefig()

            try:
                Yo, Xo, Yi, Xi, nil = resample_with_wcs(wcs, tim.wcs.wcs)
            except ResampleError:
                continue
            if len(Yo) == 0:
                continue
            print("Resampling", len(Yo), "pixels from WISE", tile.coadd_id, band)

            coimgs[iband][Yo, Xo] += tim.getImage()[Yi, Xi]
            comods[iband][Yo, Xo] += mod[Yi, Xi]
            con[iband][Yo, Xo] += 1

    for img, mod, n in zip(coimgs, comods, con):
        img /= np.maximum(n, 1)
        mod /= np.maximum(n, 1)

    for band, img, mod in zip(wbands, coimgs, comods):
        lo, hi = np.percentile(img, [25, 99])
        plt.clf()
        dimshow(img, vmin=lo, vmax=hi, ticks=False)
        plt.title("WISE W%i Data" % band)
        ps.savefig()

        plt.clf()
        dimshow(mod, vmin=lo, vmax=hi, ticks=False)
        plt.title("WISE W%i Model" % band)
        ps.savefig()

        resid = img - mod
        mx = np.abs(resid).max()
        plt.clf()
        dimshow(resid, vmin=-mx, vmax=mx, ticks=False)
        plt.title("WISE W%i Resid" % band)
        ps.savefig()

    # kwa = dict(mn=-0.1, mx=2., arcsinh = 1.)
    kwa = dict(mn=-0.1, mx=2.0, arcsinh=None)
    rgb = _unwise_to_rgb(coimgs, **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title("WISE W1/W2 Data")
    ps.savefig()

    rgb = _unwise_to_rgb(comods, **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title("WISE W1/W2 Model")
    ps.savefig()

    kwa = dict(mn=-1, mx=1, arcsinh=None)
    rgb = _unwise_to_rgb([img - mod for img, mod in zip(coimgs, comods)], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title("WISE W1/W2 Resid")
    ps.savefig()
Пример #3
0
def main():
    import argparse

    parser = argparse.ArgumentParser(
        description='This script creates small self-contained data sets that '
        'are useful for test cases of the pipeline codes.')

    parser.add_argument('ccds', help='CCDs table describing region to grab')
    parser.add_argument('outdir', help='Output directory name')
    parser.add_argument('brick', help='Brick containing these images')

    parser.add_argument('--survey-dir', type=str, default=None)
    parser.add_argument('--cache-dir', type=str, default=None,
                        help='Directory to search for cached files')
    parser.add_argument('--wise', help='For WISE outputs, give the path to a WCS file describing the sub-brick region of interest, eg, a coadd image')
    parser.add_argument('--wise-wcs-hdu', help='For WISE outputs, the HDU to read the WCS from in the file given by --wise.', type=int, default=0)
    parser.add_argument('--fpack', action='store_true', default=False)
    parser.add_argument('--gzip', action='store_true', default=False)
    parser.add_argument('--pad', action='store_true', default=False,
                        help='Keep original image size, but zero out pixels outside ROI')
    
    args = parser.parse_args()

    v = 'SKY_TEMPLATE_DIR'
    if v in os.environ:
        del os.environ[v]

    C = fits_table(args.ccds)
    print(len(C), 'CCDs in', args.ccds)
    C.camera = np.array([c.strip() for c in C.camera])
    
    survey = LegacySurveyData(cache_dir=args.cache_dir, survey_dir=args.survey_dir)

    if ',' in args.brick:
        ra,dec = args.brick.split(',')
        ra = float(ra)
        dec = float(dec)
        fakebricks = fits_table()
        fakebricks.brickname = np.array([('custom-%06i%s%05i' %
                                          (int(1000*ra), 'm' if dec < 0 else 'p',
                                           int(1000*np.abs(dec))))])
        fakebricks.ra  = np.array([ra])
        fakebricks.dec = np.array([dec])
        bricks = fakebricks
        outbricks = bricks
    else:
        bricks = survey.get_bricks_readonly()
        outbricks = bricks[np.array([n == args.brick for n in bricks.brickname])]
        assert(len(outbricks) == 1)

    outsurvey = LegacySurveyData(survey_dir = args.outdir)
    trymakedirs(args.outdir)
    outbricks.writeto(os.path.join(args.outdir, 'survey-bricks.fits.gz'))

    targetwcs = wcs_for_brick(outbricks[0])
    H,W = targetwcs.shape

    tycho2fn = survey.find_file('tycho2')
    kd = tree_open(tycho2fn, 'stars')
    radius = 1.
    rc,dc = targetwcs.radec_center()
    I = tree_search_radec(kd, rc, dc, radius)
    print(len(I), 'Tycho-2 stars within', radius, 'deg of RA,Dec (%.3f, %.3f)' % (rc,dc))
    # Read only the rows within range.
    tycho = fits_table(tycho2fn, rows=I)
    del kd
    print('Read', len(tycho), 'Tycho-2 stars')
    ok,tx,ty = targetwcs.radec2pixelxy(tycho.ra, tycho.dec)
    #margin = 100
    #tycho.cut(ok * (tx > -margin) * (tx < W+margin) *
    #          (ty > -margin) * (ty < H+margin))
    print('Cut to', len(tycho), 'Tycho-2 stars within brick')
    del ok,tx,ty
    #tycho.writeto(os.path.join(args.outdir, 'tycho2.fits.gz'))
    f,tfn = tempfile.mkstemp(suffix='.fits')
    os.close(f)
    tycho.writeto(tfn)
    outfn = os.path.join(args.outdir, 'tycho2.kd.fits')
    cmd = 'startree -i %s -o %s -P -k -n stars -T' % (tfn, outfn)
    print(cmd)
    rtn = os.system(cmd)
    assert(rtn == 0)
    os.unlink(tfn)

    from legacypipe.gaiacat import GaiaCatalog
    gcat = GaiaCatalog()
    # from ps1cat.py:
    wcs = targetwcs
    step=100.
    margin=10.
    # Grid the CCD in pixel space
    W,H = wcs.get_width(), wcs.get_height()
    xx,yy = np.meshgrid(
        np.linspace(1-margin, W+margin, 2+int((W+2*margin)/step)),
        np.linspace(1-margin, H+margin, 2+int((H+2*margin)/step)))
    # Convert to RA,Dec and then to unique healpixes
    ra,dec = wcs.pixelxy2radec(xx.ravel(), yy.ravel())
    healpixes = set()
    for r,d in zip(ra,dec):
        healpixes.add(gcat.healpix_for_radec(r, d))
    for hp in healpixes:
        hpcat = gcat.get_healpix_catalog(hp)
        ok,xx,yy = wcs.radec2pixelxy(hpcat.ra, hpcat.dec)
        onccd = np.flatnonzero((xx >= 1.-margin) * (xx <= W+margin) *
                               (yy >= 1.-margin) * (yy <= H+margin))
        hpcat.cut(onccd)
        if len(hpcat):
            outfn = os.path.join(args.outdir, 'gaia', 'chunk-%05d.fits' % hp)
            trymakedirs(os.path.join(args.outdir, 'gaia'))
            hpcat.writeto(outfn)
    
    outccds = C.copy()
    cols = outccds.get_columns()
    for c in ['ccd_x0', 'ccd_x1', 'ccd_y0', 'ccd_y1',
              'brick_x0', 'brick_x1', 'brick_y0', 'brick_y1',
              'skyver', 'wcsver', 'psfver', 'skyplver', 'wcsplver',
              'psfplver' ]:
        if c in cols:
            outccds.delete_column(c)
    outccds.image_hdu[:] = 1

    # Convert to list to avoid truncating filenames
    outccds.image_filename = [fn for fn in outccds.image_filename]
    
    for iccd,ccd in enumerate(C):

        decam = (ccd.camera.strip() == 'decam')
        bok   = (ccd.camera.strip() == '90prime')

        im = survey.get_image_object(ccd)
        print('Got', im)
        if survey.cache_dir is not None:
            im.check_for_cached_files(survey)
        slc = (slice(ccd.ccd_y0, ccd.ccd_y1), slice(ccd.ccd_x0, ccd.ccd_x1))

        psfkwargs = dict(pixPsf=True, gaussPsf=False, hybridPsf=False,
                         normalizePsf=False)

        tim = im.get_tractor_image(slc, pixPsf=True,
                                   subsky=False, nanomaggies=False,
                                   no_remap_invvar=True, old_calibs_ok=True)
        print('Tim:', tim.shape)

        psfrow = psfhdr = None

        if args.pad:
            psf = im.read_psf_model(0, 0, w=im.width, h=im.height, **psfkwargs)
            psfex = psf.psfex
        else:
            psf = tim.getPsf()
            psfex = psf.psfex

            # Did the PSF model come from a merged file?
            for fn in [im.merged_psffn, im.psffn] + im.old_merged_psffns:
                if not os.path.exists(fn):
                    continue
                T = fits_table(fn)
                I, = np.nonzero((T.expnum == im.expnum) *
                                np.array([c.strip() == im.ccdname for c in T.ccdname]))
                if len(I) != 1:
                    continue
                psfrow = T[I]
                x0 = ccd.ccd_x0
                y0 = ccd.ccd_y0
                psfrow.polzero1[0] -= x0
                psfrow.polzero2[0] -= y0
                #psfhdr = fitsio.read_header(im.merged_psffn)
                break
        psfex.fwhm = tim.psf_fwhm

        #### HACK
        #psfrow = None
        assert(psfrow is not None)
        if psfrow is not None:
            print('PSF row:', psfrow)
        #else:
        #    print('PSF:', psf)
        #    print('PsfEx:', psfex)

        skyrow = skyhdr = None

        if args.pad:
            primhdr = fitsio.read_header(im.imgfn)
            imghdr = fitsio.read_header(im.imgfn, hdu=im.hdu)

            sky = im.read_sky_model(splinesky=True, primhdr=primhdr, imghdr=imghdr)
            #skyhdr = fitsio.read_header(im.splineskyfn)
            #msky = im.read_merged_splinesky_model(slc=slc, old_calibs_ok=True)
        else:
            sky = tim.getSky()

            # Did the sky model come from a merged file?
            #msky = im.read_merged_splinesky_model(slc=slc, old_calibs_ok=True)

        print('merged skyfn:', im.merged_skyfn)
        print('single skyfn:', im.skyfn)
        print('old merged skyfns:', im.old_merged_skyfns)

        for fn in [im.merged_skyfn, im.skyfn] + im.old_merged_skyfns:
            if not os.path.exists(fn):
                continue
            T = fits_table(fn)
            I, = np.nonzero((T.expnum == im.expnum) *
                            np.array([c.strip() == im.ccdname for c in T.ccdname]))
            skyrow = T[I]
            skyrow.x0[0] = ccd.ccd_x0
            skyrow.y0[0] = ccd.ccd_y0
            # s_med = skyrow.sky_med[0]
            # s_john = skyrow.sky_john[0]
            # skyhdr = fitsio.read_header(fn)

        assert(skyrow is not None)
        ### HACK
        #skyrow = None
                
        if skyrow is not None:
            print('Sky row:', skyrow)
        else:
            print('Sky:', sky)


        # Output filename format:
        fn = ccd.image_filename.strip()
        ccd.image_filename = os.path.join(os.path.dirname(fn),
                                          '%s.%s.fits' % (os.path.basename(fn).split('.')[0], ccd.ccdname.strip()))
        outim = outsurvey.get_image_object(ccd)
        print('Output image:', outim)
        
        print('Image filename:', outim.imgfn)
        trymakedirs(outim.imgfn, dir=True)

        imgdata = tim.getImage()
        ivdata = tim.getInvvar()

        # Since we remap DQ codes (always with Mosaic and Bok, sometimes with DECam),
        # re-read from the FITS file rather than using tim.dq.
        print('Reading data quality from', im.dqfn, 'hdu', im.hdu)
        dqdata = im._read_fits(im.dqfn, im.hdu, slice=tim.slice)

        print('Tim shape:', tim.shape, 'Slice', tim.slice)
        print('image shape:', imgdata.shape, 'iv', ivdata.shape, 'DQ', dqdata.shape)

        from collections import Counter
        dqvals = Counter(dqdata.ravel())
        print('DQ pixel counts:')
        for k,n in dqvals.most_common():
            print('  0x%x' % k, ':', n)

        if args.pad:
            # Create zero image of full size, copy in data.
            fullsize = np.zeros((ccd.height, ccd.width), imgdata.dtype)
            fullsize[slc] = imgdata
            imgdata = fullsize

            fullsize = np.zeros((ccd.height, ccd.width), dqdata.dtype)
            fullsize[slc] = dqdata
            dqdata = fullsize

            fullsize = np.zeros((ccd.height, ccd.width), ivdata.dtype)
            fullsize[slc] = ivdata
            ivdata = fullsize
            
        else:
            # Adjust the header WCS by x0,y0
            crpix1 = tim.hdr['CRPIX1']
            crpix2 = tim.hdr['CRPIX2']
            tim.hdr['CRPIX1'] = crpix1 - ccd.ccd_x0
            tim.hdr['CRPIX2'] = crpix2 - ccd.ccd_y0

        # Add image extension to filename
        # fitsio doesn't compress .fz by default, so drop .fz suffix
        
        #outim.imgfn = outim.imgfn.replace('.fits', '-%s.fits' % im.ccdname)
        if not args.fpack:
            outim.imgfn = outim.imgfn.replace('.fits.fz', '.fits')
        if args.gzip:
            outim.imgfn = outim.imgfn.replace('.fits', '.fits.gz')

        #outim.wtfn  = outim.wtfn.replace('.fits', '-%s.fits' % im.ccdname)
        if not args.fpack:
            outim.wtfn  = outim.wtfn.replace('.fits.fz', '.fits')
        if args.gzip:
            outim.wtfn = outim.wtfn.replace('.fits', '.fits.gz')

        if outim.dqfn is not None:
            #outim.dqfn  = outim.dqfn.replace('.fits', '-%s.fits' % im.ccdname)
            if not args.fpack:
                outim.dqfn  = outim.dqfn.replace('.fits.fz', '.fits')
            if args.gzip:
                outim.dqfn = outim.dqfn.replace('.fits', '.fits.gz')

        if bok:
            outim.psffn = outim.psffn.replace('.psf', '-%s.psf' % im.ccdname)

        ccdfn = outim.imgfn
        ccdfn = ccdfn.replace(outsurvey.get_image_dir(), '')
        if ccdfn.startswith('/'):
            ccdfn = ccdfn[1:]
        outccds.image_filename[iccd] = ccdfn

        print('Changed output filenames to:')
        print(outim.imgfn)
        print(outim.dqfn)

        ofn = outim.imgfn
        if args.fpack:
            f,ofn = tempfile.mkstemp(suffix='.fits')
            os.close(f)
        fits = fitsio.FITS(ofn, 'rw', clobber=True)
        fits.write(None, header=tim.primhdr)
        fits.write(imgdata, header=tim.hdr, extname=ccd.ccdname)
        fits.close()

        if args.fpack:
            cmd = 'fpack -qz 8 -S %s > %s && rm %s' % (ofn, outim.imgfn, ofn)
            print('Running:', cmd)
            rtn = os.system(cmd)
            assert(rtn == 0)

        h,w = tim.shape
        if not args.pad:
            outccds.width[iccd] = w
            outccds.height[iccd] = h
            outccds.crpix1[iccd] = crpix1 - ccd.ccd_x0
            outccds.crpix2[iccd] = crpix2 - ccd.ccd_y0

        wcs = Tan(*[float(x) for x in
                    [ccd.crval1, ccd.crval2, ccd.crpix1, ccd.crpix2,
                     ccd.cd1_1, ccd.cd1_2, ccd.cd2_1, ccd.cd2_2, ccd.width, ccd.height]])

        if args.pad:
            subwcs = wcs
        else:
            subwcs = wcs.get_subimage(ccd.ccd_x0, ccd.ccd_y0, w, h)
            outccds.ra[iccd],outccds.dec[iccd] = subwcs.radec_center()

        print('Weight filename:', outim.wtfn)
        wfn = outim.wtfn
        trymakedirs(wfn, dir=True)

        ofn = wfn
        if args.fpack:
            f,ofn = tempfile.mkstemp(suffix='.fits')
            os.close(f)

        fits = fitsio.FITS(ofn, 'rw', clobber=True)
        fits.write(None, header=tim.primhdr)
        fits.write(ivdata, header=tim.hdr, extname=ccd.ccdname)
        fits.close()

        if args.fpack:
            cmd = 'fpack -qz 8 -S %s > %s && rm %s' % (ofn, wfn, ofn)
            print('Running:', cmd)
            rtn = os.system(cmd)
            assert(rtn == 0)

        if outim.dqfn is not None:
            print('DQ filename', outim.dqfn)
            trymakedirs(outim.dqfn, dir=True)

            ofn = outim.dqfn
            if args.fpack:
                f,ofn = tempfile.mkstemp(suffix='.fits')
                os.close(f)

            fits = fitsio.FITS(ofn, 'rw', clobber=True)
            fits.write(None, header=tim.primhdr)
            fits.write(dqdata, header=tim.hdr, extname=ccd.ccdname)
            fits.close()

            if args.fpack:
                cmd = 'fpack -g -q 0 -S %s > %s && rm %s' % (ofn, outim.dqfn, ofn)
                print('Running:', cmd)
                rtn = os.system(cmd)
                assert(rtn == 0)

        psfout = outim.psffn
        #if psfrow:
        #    psfout = outim.merged_psffn
        print('PSF output filename:', psfout)
        trymakedirs(psfout, dir=True)
        if psfrow:
            psfrow.writeto(psfout, primhdr=psfhdr)
        else:
            print('Writing PsfEx:', psfout)
            psfex.writeto(psfout)
            # update header
            F = fitsio.FITS(psfout, 'rw')
            F[0].write_keys([dict(name='EXPNUM', value=ccd.expnum),
                             dict(name='PLVER',  value=psf.plver),
                             dict(name='PROCDATE', value=psf.procdate),
                             dict(name='PLPROCID', value=psf.plprocid),])
            F.close()

        skyout = outim.skyfn
        #if skyrow:
        #    skyout = outim.merged_splineskyfn

        print('Sky output filename:', skyout)
        trymakedirs(skyout, dir=True)
        if skyrow is not None:
            skyrow.writeto(skyout, primhdr=skyhdr)
        else:
            primhdr = fitsio.FITSHDR()
            primhdr['PLVER'] = sky.plver
            primhdr['PLPROCID'] = sky.plprocid
            primhdr['PROCDATE'] = sky.procdate
            primhdr['EXPNUM'] = ccd.expnum
            primhdr['IMGDSUM'] = sky.datasum
            primhdr['S_MED'] = s_med
            primhdr['S_JOHN'] = s_john
            sky.write_fits(skyout, primhdr=primhdr)

        # HACK -- check result immediately.
        outccds.writeto(os.path.join(args.outdir, 'survey-ccds-1.fits.gz'))
        outsurvey.ccds = None
        outC = outsurvey.get_ccds_readonly()
        occd = outC[iccd]
        outim = outsurvey.get_image_object(occd)
        print('Got output image:', outim)
        otim = outim.get_tractor_image(pixPsf=True,
                                       hybridPsf=True, old_calibs_ok=True)
        print('Got output tim:', otim)

    outccds.writeto(os.path.join(args.outdir, 'survey-ccds-1.fits.gz'))

    # WISE
    if args.wise is not None:
        from wise.forcedphot import unwise_tiles_touching_wcs
        from wise.unwise import (unwise_tile_wcs, unwise_tiles_touching_wcs,
                                 get_unwise_tractor_image, get_unwise_tile_dir)
        # Read WCS...
        print('Reading TAN wcs header from', args.wise, 'HDU', args.wise_wcs_hdu)
        targetwcs = Tan(args.wise, args.wise_wcs_hdu)
        tiles = unwise_tiles_touching_wcs(targetwcs)
        print('Cut to', len(tiles), 'unWISE tiles')
        H,W = targetwcs.shape
        r,d = targetwcs.pixelxy2radec(np.array([1,   W,   W/2, W/2]),
                                      np.array([H/2, H/2, 1,   H  ]))
        roiradec = [r[0], r[1], d[2], d[3]]

        unwise_dir = os.environ['UNWISE_COADDS_DIR']
        wise_out = os.path.join(args.outdir, 'images', 'unwise')
        print('Will write WISE outputs to', wise_out)

        unwise_tr_dir = os.environ['UNWISE_COADDS_TIMERESOLVED_DIR']
        wise_tr_out = os.path.join(args.outdir, 'images', 'unwise-tr')
        print('Will write WISE time-resolved outputs to', wise_tr_out)
        trymakedirs(wise_tr_out)

        W = fits_table(os.path.join(unwise_tr_dir, 'time_resolved_atlas.fits'))
        print('Read', len(W), 'time-resolved WISE coadd tiles')
        W.cut(np.array([t in tiles.coadd_id for t in W.coadd_id]))
        print('Cut to', len(W), 'time-resolved vs', len(tiles), 'full-depth')

        # Write the time-resolved index subset.
        W.writeto(os.path.join(wise_tr_out, 'time_resolved_atlas.fits'))

        # this ought to be enough for anyone =)
        _,Nepochs = W.epoch_bitmask.shape
        print('N epochs in time-resolved atlas:', Nepochs)

        wisedata = []

        # full depth
        for band in [1,2,3,4]:
            wisedata.append((unwise_dir, wise_out, tiles.coadd_id, band, True))

        # time-resolved
        for band in [1,2]:
            # W1 is bit 0 (value 0x1), W2 is bit 1 (value 0x2)
            bitmask = (1 << (band-1))
            for e in range(Nepochs):
                # Which tiles have images for this epoch?
                I = np.flatnonzero(W.epoch_bitmask[:,e] & bitmask)
                if len(I) == 0:
                    continue
                print('Epoch %i: %i tiles:' % (e, len(I)), W.coadd_id[I])
                edir = os.path.join(unwise_tr_dir, 'e%03i' % e)
                eoutdir = os.path.join(wise_tr_out, 'e%03i' % e)
                wisedata.append((edir, eoutdir, tiles.coadd_id[I], band, False))

        wrote_masks = set()

        model_dir = os.environ.get('UNWISE_MODEL_SKY_DIR')
        if model_dir is not None:
            model_dir_out = os.path.join(args.outdir, 'images', 'unwise-mod')
            trymakedirs(model_dir_out)

        for indir, outdir, tiles, band, fulldepth in wisedata:
            for tile in tiles:
                wanyband = 'w'
                tim = get_unwise_tractor_image(indir, tile, band,
                                               bandname=wanyband, roiradecbox=roiradec)
                print('Got unWISE tim', tim)
                print(tim.shape)

                if model_dir is not None and fulldepth and band in [1,2]:
                    print('ROI', tim.roi)
                    #0387p575.1.mod.fits
                    fn = '%s.%i.mod.fits' % (tile, band)
                    print('Filename', fn)
                    F = fitsio.FITS(os.path.join(model_dir, fn))
                    x0,x1,y0,y1 = tim.roi
                    slc = slice(y0,y1),slice(x0,x1)

                    phdr = F[0].read_header()

                    outfn = os.path.join(model_dir_out, fn)
                    for e,extname in [(1,'MODEL'), (2,'SKY')]:
                        pix = F[e][slc]
                        hdr = F[e].read_header()
                        crpix1 = hdr['CRPIX1']
                        crpix2 = hdr['CRPIX2']
                        hdr['CRPIX1'] -= x0
                        hdr['CRPIX2'] -= y0
                        #print('mod', mod)
                        #print('Model', mod.shape)
                        if e == 1:
                            fitsio.write(outfn, None, clobber=True, header=phdr)
                        fitsio.write(outfn, pix, header=hdr, extname=extname)
                    print('Wrote', outfn)

                thisdir = get_unwise_tile_dir(outdir, tile)
                print('Directory for this WISE tile:', thisdir)
                base = os.path.join(thisdir, 'unwise-%s-w%i-' % (tile, band))
                print('Base filename:', base)

                masked = True
                mu = 'm' if masked else 'u'

                imfn = base + 'img-%s.fits'       % mu
                ivfn = base + 'invvar-%s.fits.gz' % mu
                nifn = base + 'n-%s.fits.gz'      % mu
                nufn = base + 'n-u.fits.gz'

                #print('WISE image header:', tim.hdr)

                # Adjust the header WCS by x0,y0
                wcs = tim.wcs.wcs
                tim.hdr['CRPIX1'] = wcs.crpix[0]
                tim.hdr['CRPIX2'] = wcs.crpix[1]

                H,W = tim.shape
                tim.hdr['IMAGEW'] = W
                tim.hdr['IMAGEH'] = H

                print('WCS:', wcs)
                print('Header CRPIX', tim.hdr['CRPIX1'], tim.hdr['CRPIX2'])

                trymakedirs(imfn, dir=True)
                fitsio.write(imfn, tim.getImage(), header=tim.hdr, clobber=True)
                print('Wrote', imfn)
                fitsio.write(ivfn, tim.getInvvar(), header=tim.hdr, clobber=True)
                print('Wrote', ivfn)
                fitsio.write(nifn, tim.nims, header=tim.hdr, clobber=True)
                print('Wrote', nifn)
                fitsio.write(nufn, tim.nuims, header=tim.hdr, clobber=True)
                print('Wrote', nufn)

                if not (indir,tile) in wrote_masks:
                    print('Looking for mask file for', indir, tile)
                    # record that we tried this dir/tile combo
                    wrote_masks.add((indir,tile))
                    for idir in indir.split(':'):
                        tdir = get_unwise_tile_dir(idir, tile)
                        maskfn = 'unwise-%s-msk.fits.gz' % tile
                        fn = os.path.join(tdir, maskfn)
                        print('Mask file:', fn)
                        if os.path.exists(fn):
                            print('Reading', fn)
                            (x0,x1,y0,y1) = tim.roi
                            roislice = (slice(y0,y1), slice(x0,x1))
                            F = fitsio.FITS(fn)[0]
                            hdr = F.read_header()
                            M = F[roislice]
                            outfn = os.path.join(thisdir, maskfn)
                            fitsio.write(outfn, M, header=tim.hdr, clobber=True)
                            print('Wrote', outfn)
                            break

    outC = outsurvey.get_ccds_readonly()
    for iccd,ccd in enumerate(outC):
        outim = outsurvey.get_image_object(ccd)
        print('Got output image:', outim)
        otim = outim.get_tractor_image(pixPsf=True,
                                       hybridPsf=True, old_calibs_ok=True)
        print('Got output tim:', otim)
Пример #4
0
def unwise_forcedphot(cat, tiles, band=1, roiradecbox=None,
                      use_ceres=True, ceres_block=8,
                      save_fits=False, get_models=False, ps=None,
                      psf_broadening=None,
                      pixelized_psf=False,
                      get_masks=None,
                      move_crpix=False,
                      modelsky_dir=None):
    '''
    Given a list of tractor sources *cat*
    and a list of unWISE tiles *tiles* (a fits_table with RA,Dec,coadd_id)
    runs forced photometry, returning a FITS table the same length as *cat*.

    *get_masks*: the WCS to resample mask bits into.
    '''
    from tractor import NanoMaggies, PointSource, Tractor, ExpGalaxy, DevGalaxy, FixedCompositeGalaxy

    if not pixelized_psf and psf_broadening is None:
        # PSF broadening in post-reactivation data, by band.
        # Newer version from Aaron's email to decam-chatter, 2018-06-14.
        broadening = { 1: 1.0405, 2: 1.0346, 3: None, 4: None }
        psf_broadening = broadening[band]

    if False:
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence('wise-forced-w%i' % band)
    plots = (ps is not None)
    if plots:
        import pylab as plt
    
    wantims = (plots or save_fits or get_models)
    wanyband = 'w'
    if get_models:
        models = {}

    wband = 'w%i' % band

    fskeys = ['prochi2', 'pronpix', 'profracflux', 'proflux', 'npix',
              'pronexp']

    Nsrcs = len(cat)
    phot = fits_table()
    # Filled in based on unique tile overlap
    phot.wise_coadd_id = np.array(['        '] * Nsrcs)
    phot.set(wband + '_psfdepth', np.zeros(len(phot), np.float32))

    ra  = np.array([src.getPosition().ra  for src in cat])
    dec = np.array([src.getPosition().dec for src in cat])

    nexp = np.zeros(Nsrcs, np.int16)
    mjd  = np.zeros(Nsrcs, np.float64)
    central_flux = np.zeros(Nsrcs, np.float32)

    fitstats = {}
    tims = []

    if get_masks:
        mh,mw = get_masks.shape
        maskmap = np.zeros((mh,mw), np.uint32)
    
    for tile in tiles:
        print('Reading WISE tile', tile.coadd_id, 'band', band)

        tim = get_unwise_tractor_image(tile.unwise_dir, tile.coadd_id, band,
                                       bandname=wanyband, roiradecbox=roiradecbox)
        if tim is None:
            print('Actually, no overlap with tile', tile.coadd_id)
            continue

        if plots:
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(tim.getImage(), interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=10 * sig1)
            plt.colorbar()
            tag = '%s W%i' % (tile.coadd_id, band)
            plt.title('%s: tim data' % tag)
            ps.savefig()

            plt.clf()
            plt.hist((tim.getImage() * tim.inverr)[tim.inverr > 0].ravel(),
                     range=(-5,10), bins=100)
            plt.xlabel('Per-pixel intensity (Sigma)')
            plt.title(tag)
            ps.savefig()

        if move_crpix and band in [1, 2]:
            realwcs = tim.wcs.wcs
            x,y = realwcs.crpix
            tile_crpix = tile.get('crpix_w%i' % band)
            dx = tile_crpix[0] - 1024.5
            dy = tile_crpix[1] - 1024.5
            realwcs.set_crpix(x+dx, y+dy)
            #print('CRPIX', x,y, 'shift by', dx,dy, 'to', realwcs.crpix)

        if modelsky_dir and band in [1, 2]:
            fn = os.path.join(modelsky_dir, '%s.%i.mod.fits' % (tile.coadd_id, band))
            if not os.path.exists(fn):
                raise RuntimeError('WARNING: does not exist:', fn)
            x0,x1,y0,y1 = tim.roi
            bg = fitsio.FITS(fn)[2][y0:y1, x0:x1]
            #print('Read background map:', bg.shape, bg.dtype, 'vs image', tim.shape)

            if plots:
                plt.clf()
                plt.subplot(1,2,1)
                plt.imshow(tim.getImage(), interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-3 * sig1, vmax=5 * sig1)
                plt.subplot(1,2,2)
                plt.imshow(bg, interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-3 * sig1, vmax=5 * sig1)
                tag = '%s W%i' % (tile.coadd_id, band)
                plt.suptitle(tag)
                ps.savefig()

                plt.clf()
                ha = dict(range=(-5,10), bins=100, histtype='step')
                plt.hist((tim.getImage() * tim.inverr)[tim.inverr > 0].ravel(),
                         color='b', label='Original', **ha)
                plt.hist(((tim.getImage()-bg) * tim.inverr)[tim.inverr > 0].ravel(),
                         color='g', label='Minus Background', **ha)
                plt.axvline(0, color='k', alpha=0.5)
                plt.xlabel('Per-pixel intensity (Sigma)')
                plt.legend()
                plt.title(tag + ': background')
                ps.savefig()

            # Actually subtract the background!
            tim.data -= bg

        # Floor the per-pixel variances
        if band in [1,2]:
            # in Vega nanomaggies per pixel
            floor_sigma = {1: 0.5, 2: 2.0}
            with np.errstate(divide='ignore'):
                new_ie = 1. / np.hypot(1./tim.inverr, floor_sigma[band])
            new_ie[tim.inverr == 0] = 0.

            if plots:
                plt.clf()
                plt.plot((1. / tim.inverr[tim.inverr>0]).ravel(), (1./new_ie[tim.inverr>0]).ravel(), 'b.')
                plt.title('unWISE per-pixel error: %s band %i' % (tile.coadd_id, band))
                plt.xlabel('original')
                plt.ylabel('floored')
                ps.savefig()

            tim.inverr = new_ie

        # Read mask file?
        if get_masks:
            from astrometry.util.resample import resample_with_wcs, OverlapError
            # unwise_dir can be a colon-separated list of paths
            tilemask = None
            for d in tile.unwise_dir.split(':'):
                fn = os.path.join(d, tile.coadd_id[:3], tile.coadd_id,
                                  'unwise-%s-msk.fits.gz' % tile.coadd_id)
                if os.path.exists(fn):
                    print('Reading unWISE mask file', fn)
                    x0,x1,y0,y1 = tim.roi
                    tilemask = fitsio.FITS(fn)[0][y0:y1,x0:x1]
                    break
            if tilemask is None:
                print('unWISE mask file for tile', tile.coadd_id, 'does not exist')
            else:
                try:
                    tanwcs = tim.wcs.wcs
                    assert(tanwcs.shape == tilemask.shape)
                    Yo,Xo,Yi,Xi,_ = resample_with_wcs(get_masks, tanwcs, intType=np.int16)
                    # Only deal with mask pixels that are set.
                    I, = np.nonzero(tilemask[Yi,Xi] > 0)
                    # Trim to unique area for this tile
                    rr,dd = get_masks.pixelxy2radec(Yo[I]+1, Xo[I]+1)
                    good = radec_in_unique_area(rr, dd, tile.ra1, tile.ra2, tile.dec1, tile.dec2)
                    I = I[good]
                    maskmap[Yo[I],Xo[I]] = tilemask[Yi[I], Xi[I]]
                except OverlapError:
                    # Shouldn't happen by this point
                    print('No overlap between WISE tile', tile.coadd_id, 'and brick')

        # The tiles have some overlap, so zero out pixels outside the
        # tile's unique area.
        th,tw = tim.shape
        xx,yy = np.meshgrid(np.arange(tw), np.arange(th))
        rr,dd = tim.wcs.wcs.pixelxy2radec(xx+1, yy+1)
        unique = radec_in_unique_area(rr, dd, tile.ra1, tile.ra2, tile.dec1, tile.dec2)
        #print(np.sum(unique), 'of', (th*tw), 'pixels in this tile are unique')
        tim.inverr[unique == False] = 0.
        del xx,yy,rr,dd,unique

        if plots:
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(tim.getImage() * (tim.inverr > 0),
                       interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=10 * sig1)
            plt.colorbar()
            tag = '%s W%i' % (tile.coadd_id, band)
            plt.title('%s: tim data (unique)' % tag)
            ps.savefig()

        if pixelized_psf:
            import unwise_psf
            if (band == 1) or (band == 2):
                # we only have updated PSFs for W1 and W2
                psfimg = unwise_psf.get_unwise_psf(band, tile.coadd_id, 
                                                   modelname='neo4_unwisecat')
            else:
                psfimg = unwise_psf.get_unwise_psf(band, tile.coadd_id)

            if band == 4:
                # oversample (the unwise_psf models are at native W4 5.5"/pix,
                # while the unWISE coadds are made at 2.75"/pix.
                ph,pw = psfimg.shape
                subpsf = np.zeros((ph*2-1, pw*2-1), np.float32)
                from astrometry.util.util import lanczos3_interpolate
                xx,yy = np.meshgrid(np.arange(0., pw-0.51, 0.5, dtype=np.float32),
                                    np.arange(0., ph-0.51, 0.5, dtype=np.float32))
                xx = xx.ravel()
                yy = yy.ravel()
                ix = xx.astype(np.int32)
                iy = yy.astype(np.int32)
                dx = (xx - ix).astype(np.float32)
                dy = (yy - iy).astype(np.float32)
                psfimg = psfimg.astype(np.float32)
                rtn = lanczos3_interpolate(ix, iy, dx, dy, [subpsf.flat], [psfimg])

                if plots:
                    plt.clf()
                    plt.imshow(psfimg, interpolation='nearest', origin='lower')
                    plt.title('Original PSF model')
                    ps.savefig()
                    plt.clf()
                    plt.imshow(subpsf, interpolation='nearest', origin='lower')
                    plt.title('Subsampled PSF model')
                    ps.savefig()

                psfimg = subpsf
                del xx, yy, ix, iy, dx, dy

            from tractor.psf import PixelizedPSF
            psfimg /= psfimg.sum()
            fluxrescales = {1: 1.04, 2: 1.005, 3: 1.0, 4: 1.0}
            psfimg *= fluxrescales[band]
            tim.psf = PixelizedPSF(psfimg)

        if psf_broadening is not None and not pixelized_psf:
            # psf_broadening is a factor by which the PSF FWHMs
            # should be scaled; the PSF is a little wider
            # post-reactivation.
            psf = tim.getPsf()
            from tractor import GaussianMixturePSF
            if isinstance(psf, GaussianMixturePSF):
                #
                print('Broadening PSF: from', psf)
                p0 = psf.getParams()
                pnames = psf.getParamNames()
                p1 = [p * psf_broadening**2 if 'var' in name else p
                      for (p, name) in zip(p0, pnames)]
                psf.setParams(p1)
                print('Broadened PSF:', psf)
            else:
                print('WARNING: cannot apply psf_broadening to WISE PSF of type', type(psf))

        wcs = tim.wcs.wcs
        ok,x,y = wcs.radec2pixelxy(ra, dec)
        x = np.round(x - 1.).astype(int)
        y = np.round(y - 1.).astype(int)
        good = (x >= 0) * (x < tw) * (y >= 0) * (y < th)
        # Which sources are in this brick's unique area?
        usrc = radec_in_unique_area(ra, dec, tile.ra1, tile.ra2, tile.dec1, tile.dec2)
        I, = np.nonzero(good * usrc)

        nexp[I] = tim.nuims[y[I], x[I]]
        if hasattr(tim, 'mjdmin') and hasattr(tim, 'mjdmax'):
            mjd[I] = (tim.mjdmin + tim.mjdmax) / 2.
        phot.wise_coadd_id[I] = tile.coadd_id

        central_flux[I] = tim.getImage()[y[I], x[I]]
        del x,y,good,usrc

        # PSF norm for depth
        psf = tim.getPsf()
        h,w = tim.shape
        patch = psf.getPointSourcePatch(h//2, w//2).patch
        psfnorm = np.sqrt(np.sum(patch**2))
        # To handle zero-depth, we return 1/nanomaggies^2 units rather than mags.
        psfdepth = 1. / (tim.sig1 / psfnorm)**2
        phot.get(wband + '_psfdepth')[I] = psfdepth

        tim.tile = tile
        tims.append(tim)

    if plots:
        plt.clf()
        mn,mx = 0.1, 20000
        plt.hist(np.log10(np.clip(central_flux, mn, mx)), bins=100,
                 range=(np.log10(mn), np.log10(mx)))
        logt = np.arange(0, 5)
        plt.xticks(logt, ['%i' % i for i in 10.**logt])
        plt.title('Central fluxes (W%i)' % band)
        plt.axvline(np.log10(20000), color='k')
        plt.axvline(np.log10(1000), color='k')
        ps.savefig()

    # Eddie's non-secret recipe:
    #- central pixel <= 1000: 19x19 pix box size
    #- central pixel in 1000 - 20000: 59x59 box size
    #- central pixel > 20000 or saturated: 149x149 box size
    #- object near "bright star": 299x299 box size
    nbig = nmedium = nsmall = 0
    for src,cflux in zip(cat, central_flux):
        if cflux > 20000:
            R = 100
            nbig += 1
        elif cflux > 1000:
            R = 30
            nmedium += 1
        else:
            R = 15
            nsmall += 1
        if isinstance(src, PointSource):
            src.fixedRadius = R
        else:
            ### FIXME -- sizes for galaxies..... can we set PSF size separately?
            galrad = 0
            # RexGalaxy is a subclass of ExpGalaxy
            if isinstance(src, (ExpGalaxy, DevGalaxy)):
                galrad = src.shape.re
            elif isinstance(src, FixedCompositeGalaxy):
                galrad = max(src.shapeExp.re, src.shapeDev.re)
            pixscale = 2.75
            src.halfsize = int(np.hypot(R, galrad * 5 / pixscale))

    #print('Set WISE source sizes:', nbig, 'big', nmedium, 'medium', nsmall, 'small')

    minsb = 0.
    fitsky = False

    tractor = Tractor(tims, cat)
    if use_ceres:
        from tractor.ceres_optimizer import CeresOptimizer
        tractor.optimizer = CeresOptimizer(BW=ceres_block, BH=ceres_block)
    tractor.freezeParamsRecursive('*')
    tractor.thawPathsTo(wanyband)

    kwa = dict(fitstat_extras=[('pronexp', [tim.nims for tim in tims])])
    t0 = Time()

    R = tractor.optimize_forced_photometry(
        minsb=minsb, mindlnp=1., sky=fitsky, fitstats=True,
        variance=True, shared_params=False,
        wantims=wantims, **kwa)
    print('unWISE forced photometry took', Time() - t0)

    if use_ceres:
        term = R.ceres_status['termination']
        # Running out of memory can cause failure to converge
        # and term status = 2.
        # Fail completely in this case.
        if term != 0:
            print('Ceres termination status:', term)
            raise RuntimeError(
                'Ceres terminated with status %i' % term)

    if wantims:
        ims1 = R.ims1
    flux_invvars = R.IV
    if R.fitstats is not None:
        for k in fskeys:
            x = getattr(R.fitstats, k)
            fitstats[k] = np.array(x).astype(np.float32)

    if save_fits:
        for i,tim in enumerate(tims):
            tile = tim.tile
            (dat, mod, ie, chi, roi) = ims1[i]
            wcshdr = fitsio.FITSHDR()
            tim.wcs.wcs.add_to_header(wcshdr)
            tag = 'fit-%s-w%i' % (tile.coadd_id, band)
            fitsio.write('%s-data.fits' %
                         tag, dat, clobber=True, header=wcshdr)
            fitsio.write('%s-mod.fits' % tag,  mod,
                         clobber=True, header=wcshdr)
            fitsio.write('%s-chi.fits' % tag,  chi,
                         clobber=True, header=wcshdr)

    if plots:
        # Create models for just the brightest sources
        bright_cat = [src for src in cat
                      if src.getBrightness().getBand(wanyband) > 1000]
        print('Bright soures:', len(bright_cat))
        btr = Tractor(tims, bright_cat)
        for tim in tims:
            mod = btr.getModelImage(tim)
            tile = tim.tile
            tag = '%s W%i' % (tile.coadd_id, band)
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(mod, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: bright-star models' % tag)
            ps.savefig()

    if get_models:
        for i,tim in enumerate(tims):
            tile = tim.tile
            (dat, mod, ie, chi, roi) = ims1[i]
            models[(tile.coadd_id, band)] = (mod, dat, ie, tim.roi, tim.wcs.wcs)

    if plots:
        for i,tim in enumerate(tims):
            tile = tim.tile
            tag = '%s W%i' % (tile.coadd_id, band)
            (dat, mod, ie, chi, roi) = ims1[i]
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(dat, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: data' % tag)
            ps.savefig()
            plt.clf()
            plt.imshow(mod, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: model' % tag)
            ps.savefig()

            plt.clf()
            plt.imshow(chi, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-5, vmax=+5)
            plt.colorbar()
            plt.title('%s: chi' % tag)
            ps.savefig()


    nm = np.array([src.getBrightness().getBand(wanyband) for src in cat])
    nm_ivar = flux_invvars
    # Sources out of bounds, eg, never change from their default
    # (1-sigma or whatever) initial fluxes.  Zero them out instead.
    nm[nm_ivar == 0] = 0.

    phot.set(wband + '_nanomaggies', nm.astype(np.float32))
    phot.set(wband + '_nanomaggies_ivar', nm_ivar.astype(np.float32))
    dnm = np.zeros(len(nm_ivar), np.float32)
    okiv = (nm_ivar > 0)
    dnm[okiv] = (1. / np.sqrt(nm_ivar[okiv])).astype(np.float32)
    okflux = (nm > 0)
    mag = np.zeros(len(nm), np.float32)
    mag[okflux] = (NanoMaggies.nanomaggiesToMag(nm[okflux])
                   ).astype(np.float32)
    dmag = np.zeros(len(nm), np.float32)
    ok = (okiv * okflux)
    dmag[ok] = (np.abs((-2.5 / np.log(10.)) * dnm[ok] / nm[ok])
                ).astype(np.float32)
    mag[np.logical_not(okflux)] = np.nan
    dmag[np.logical_not(ok)] = np.nan

    phot.set(wband + '_mag', mag)
    phot.set(wband + '_mag_err', dmag)

    for k in fskeys:
        phot.set(wband + '_' + k, fitstats[k])
    phot.set(wband + '_nexp', nexp)
    if not np.all(mjd == 0):
        phot.set(wband + '_mjd', mjd)

    rtn = wphotduck()
    rtn.phot = phot
    rtn.models = None
    rtn.maskmap = None
    if get_models:
        rtn.models = models
    if get_masks:
        rtn.maskmap = maskmap
    return rtn
Пример #5
0
def wise_cutouts(ra,
                 dec,
                 radius,
                 ps,
                 pixscale=2.75,
                 survey_dir=None,
                 unwise_dir=None):
    '''
    radius in arcsec.
    pixscale: WISE pixel scale in arcsec/pixel;
        make this smaller than 2.75 to oversample.
    '''

    if unwise_dir is None:
        unwise_dir = os.environ.get('UNWISE_COADDS_DIR')

    npix = int(np.ceil(radius / pixscale))
    print('Image size:', npix)
    W = H = npix
    pix = pixscale / 3600.
    wcs = Tan(ra, dec, (W + 1) / 2., (H + 1) / 2., -pix, 0., 0., pix, float(W),
              float(H))
    # Find DECaLS bricks overlapping
    survey = LegacySurveyData(survey_dir=survey_dir)
    B = bricks_touching_wcs(wcs, survey=survey)
    print('Found', len(B), 'bricks overlapping')

    TT = []
    for b in B.brickname:
        fn = survey.find_file('tractor', brick=b)
        T = fits_table(fn)
        print('Read', len(T), 'from', b)
        primhdr = fitsio.read_header(fn)
        TT.append(T)
    T = merge_tables(TT)
    print('Total of', len(T), 'sources')
    T.cut(T.brick_primary)
    print(len(T), 'primary')
    margin = 20
    ok, xx, yy = wcs.radec2pixelxy(T.ra, T.dec)
    I = np.flatnonzero((xx > -margin) * (yy > -margin) * (xx < W + margin) *
                       (yy < H + margin))
    T.cut(I)
    print(len(T), 'within ROI')

    #return wcs,T

    # Pull out DECaLS coadds (image, model, resid).
    dwcs = wcs.scale(2. * pixscale / 0.262)
    dh, dw = dwcs.shape
    print('DECaLS resampled shape:', dh, dw)
    tags = ['image', 'model', 'resid']
    coimgs = [np.zeros((dh, dw, 3), np.uint8) for t in tags]

    for b in B.brickname:
        fn = survey.find_file('image', brick=b, band='r')
        bwcs = Tan(fn, 1)  # ext 1: .fz
        try:
            Yo, Xo, Yi, Xi, nil = resample_with_wcs(dwcs, bwcs)
        except ResampleError:
            continue
        if len(Yo) == 0:
            continue
        print('Resampling', len(Yo), 'pixels from', b)
        xl, xh, yl, yh = Xi.min(), Xi.max(), Yi.min(), Yi.max()
        #print('python legacypipe/runbrick.py -b %s --zoom %i %i %i %i --outdir cluster --pixpsf --splinesky --pipe --no-early-coadds' %
        #      (b, xl-5, xh+5, yl-5, yh+5) + ' -P \'pickles/cluster-%(brick)s-%%(stage)s.pickle\'')
        for i, tag in enumerate(tags):
            fn = survey.find_file(tag + '-jpeg', brick=b)
            img = plt.imread(fn)
            img = np.flipud(img)
            coimgs[i][Yo, Xo, :] = img[Yi, Xi, :]

    tt = dict(image='Image', model='Model', resid='Resid')
    for img, tag in zip(coimgs, tags):
        plt.clf()
        dimshow(img, ticks=False)
        plt.title('DECaLS grz %s' % tt[tag])
        ps.savefig()

    # Find unWISE tiles overlapping
    tiles = unwise_tiles_touching_wcs(wcs)
    print('Cut to', len(tiles), 'unWISE tiles')

    # Here we assume the targetwcs is axis-aligned and that the
    # edge midpoints yield the RA,Dec limits (true for TAN).
    r, d = wcs.pixelxy2radec(np.array([1, W, W / 2, W / 2]),
                             np.array([H / 2, H / 2, 1, H]))
    # the way the roiradec box is used, the min/max order doesn't matter
    roiradec = [r[0], r[1], d[2], d[3]]

    ra, dec = T.ra, T.dec

    srcs = read_fits_catalog(T)

    wbands = [1, 2, 3, 4]
    wanyband = 'w'

    for band in wbands:
        f = T.get('flux_w%i' % band)
        f *= 10.**(primhdr['WISEAB%i' % band] / 2.5)

    coimgs = [np.zeros((H, W), np.float32) for b in wbands]
    comods = [np.zeros((H, W), np.float32) for b in wbands]
    con = [np.zeros((H, W), np.uint8) for b in wbands]

    for iband, band in enumerate(wbands):
        print('Photometering WISE band', band)
        wband = 'w%i' % band

        for i, src in enumerate(srcs):
            #print('Source', src, 'brightness', src.getBrightness(), 'params', src.getBrightness().getParams())
            #src.getBrightness().setParams([T.wise_flux[i, band-1]])
            src.setBrightness(
                NanoMaggies(**{wanyband: T.get('flux_w%i' % band)[i]}))
            # print('Set source brightness:', src.getBrightness())

        # The tiles have some overlap, so for each source, keep the
        # fit in the tile whose center is closest to the source.
        for tile in tiles:
            print('Reading tile', tile.coadd_id)

            tim = get_unwise_tractor_image(unwise_dir,
                                           tile.coadd_id,
                                           band,
                                           bandname=wanyband,
                                           roiradecbox=roiradec)
            if tim is None:
                print('Actually, no overlap with tile', tile.coadd_id)
                continue
            print('Read image with shape', tim.shape)

            # Select sources in play.
            wisewcs = tim.wcs.wcs
            H, W = tim.shape
            ok, x, y = wisewcs.radec2pixelxy(ra, dec)
            x = (x - 1.).astype(np.float32)
            y = (y - 1.).astype(np.float32)
            margin = 10.
            I = np.flatnonzero((x >= -margin) * (x < W + margin) *
                               (y >= -margin) * (y < H + margin))
            print(len(I), 'within the image + margin')

            subcat = [srcs[i] for i in I]
            tractor = Tractor([tim], subcat)
            mod = tractor.getModelImage(0)

            # plt.clf()
            # dimshow(tim.getImage(), ticks=False)
            # plt.title('WISE %s %s' % (tile.coadd_id, wband))
            # ps.savefig()

            # plt.clf()
            # dimshow(mod, ticks=False)
            # plt.title('WISE %s %s' % (tile.coadd_id, wband))
            # ps.savefig()

            try:
                Yo, Xo, Yi, Xi, nil = resample_with_wcs(wcs, tim.wcs.wcs)
            except ResampleError:
                continue
            if len(Yo) == 0:
                continue
            print('Resampling', len(Yo), 'pixels from WISE', tile.coadd_id,
                  band)

            coimgs[iband][Yo, Xo] += tim.getImage()[Yi, Xi]
            comods[iband][Yo, Xo] += mod[Yi, Xi]
            con[iband][Yo, Xo] += 1

    for img, mod, n in zip(coimgs, comods, con):
        img /= np.maximum(n, 1)
        mod /= np.maximum(n, 1)

    for band, img, mod in zip(wbands, coimgs, comods):
        lo, hi = np.percentile(img, [25, 99])
        plt.clf()
        dimshow(img, vmin=lo, vmax=hi, ticks=False)
        plt.title('WISE W%i Data' % band)
        ps.savefig()

        plt.clf()
        dimshow(mod, vmin=lo, vmax=hi, ticks=False)
        plt.title('WISE W%i Model' % band)
        ps.savefig()

        resid = img - mod
        mx = np.abs(resid).max()
        plt.clf()
        dimshow(resid, vmin=-mx, vmax=mx, ticks=False)
        plt.title('WISE W%i Resid' % band)
        ps.savefig()

    #kwa = dict(mn=-0.1, mx=2., arcsinh = 1.)
    kwa = dict(mn=-0.1, mx=2., arcsinh=None)
    rgb = _unwise_to_rgb(coimgs[:2], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title('WISE W1/W2 Data')
    ps.savefig()

    rgb = _unwise_to_rgb(comods[:2], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title('WISE W1/W2 Model')
    ps.savefig()

    kwa = dict(mn=-1, mx=1, arcsinh=None)
    rgb = _unwise_to_rgb(
        [img - mod for img, mod in list(zip(coimgs, comods))[:2]], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title('WISE W1/W2 Resid')
    ps.savefig()

    return wcs, T
Пример #6
0
def unwise_forcedphot(cat,
                      tiles,
                      band=1,
                      roiradecbox=None,
                      use_ceres=True,
                      ceres_block=8,
                      save_fits=False,
                      get_models=False,
                      ps=None,
                      psf_broadening=None,
                      pixelized_psf=False,
                      get_masks=None,
                      move_crpix=False,
                      modelsky_dir=None,
                      tag=None):
    '''
    Given a list of tractor sources *cat*
    and a list of unWISE tiles *tiles* (a fits_table with RA,Dec,coadd_id)
    runs forced photometry, returning a FITS table the same length as *cat*.

    *get_masks*: the WCS to resample mask bits into.
    '''
    from tractor import PointSource, Tractor, ExpGalaxy, DevGalaxy
    from tractor.sersic import SersicGalaxy

    if tag is None:
        tag = ''
    else:
        tag = tag + ': '
    if not pixelized_psf and psf_broadening is None:
        # PSF broadening in post-reactivation data, by band.
        # Newer version from Aaron's email to decam-chatter, 2018-06-14.
        broadening = {1: 1.0405, 2: 1.0346, 3: None, 4: None}
        psf_broadening = broadening[band]

    if False:
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence('wise-forced-w%i' % band)
    plots = (ps is not None)
    if plots:
        import pylab as plt

    wantims = (plots or save_fits or get_models)
    wanyband = 'w'
    if get_models:
        models = []

    wband = 'w%i' % band

    Nsrcs = len(cat)
    phot = fits_table()
    # Filled in based on unique tile overlap
    phot.wise_coadd_id = np.array(['        '] * Nsrcs, dtype='U8')
    phot.wise_x = np.zeros(Nsrcs, np.float32)
    phot.wise_y = np.zeros(Nsrcs, np.float32)
    phot.set('psfdepth_%s' % wband, np.zeros(Nsrcs, np.float32))
    nexp = np.zeros(Nsrcs, np.int16)
    mjd = np.zeros(Nsrcs, np.float64)
    central_flux = np.zeros(Nsrcs, np.float32)

    ra = np.array([src.getPosition().ra for src in cat])
    dec = np.array([src.getPosition().dec for src in cat])

    fskeys = ['prochi2', 'profracflux']
    fitstats = {}

    if get_masks:
        mh, mw = get_masks.shape
        maskmap = np.zeros((mh, mw), np.uint32)

    tims = []
    for tile in tiles:
        info(tag + 'Reading WISE tile', tile.coadd_id, 'band', band)
        tim = get_unwise_tractor_image(tile.unwise_dir,
                                       tile.coadd_id,
                                       band,
                                       bandname=wanyband,
                                       roiradecbox=roiradecbox)
        if tim is None:
            debug('Actually, no overlap with WISE coadd tile', tile.coadd_id)
            continue

        if plots:
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(tim.getImage(),
                       interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=-3 * sig1,
                       vmax=10 * sig1)
            plt.colorbar()
            tag = '%s W%i' % (tile.coadd_id, band)
            plt.title('%s: tim data' % tag)
            ps.savefig()
            plt.clf()
            plt.hist((tim.getImage() * tim.inverr)[tim.inverr > 0].ravel(),
                     range=(-5, 10),
                     bins=100)
            plt.xlabel('Per-pixel intensity (Sigma)')
            plt.title(tag)
            ps.savefig()

        if move_crpix and band in [1, 2]:
            realwcs = tim.wcs.wcs
            x, y = realwcs.crpix
            tile_crpix = tile.get('crpix_w%i' % band)
            dx = tile_crpix[0] - 1024.5
            dy = tile_crpix[1] - 1024.5
            realwcs.set_crpix(x + dx, y + dy)
            debug('unWISE', tile.coadd_id, 'band', band, 'CRPIX', x, y,
                  'shift by', dx, dy, 'to', realwcs.crpix)

        if modelsky_dir and band in [1, 2]:
            fn = os.path.join(modelsky_dir,
                              '%s.%i.mod.fits' % (tile.coadd_id, band))
            if not os.path.exists(fn):
                raise RuntimeError('WARNING: does not exist:', fn)
            x0, x1, y0, y1 = tim.roi
            bg = fitsio.FITS(fn)[2][y0:y1, x0:x1]
            assert (bg.shape == tim.shape)

            if plots:
                plt.clf()
                plt.subplot(1, 2, 1)
                plt.imshow(tim.getImage(),
                           interpolation='nearest',
                           origin='lower',
                           cmap='gray',
                           vmin=-3 * sig1,
                           vmax=5 * sig1)
                plt.subplot(1, 2, 2)
                plt.imshow(bg,
                           interpolation='nearest',
                           origin='lower',
                           cmap='gray',
                           vmin=-3 * sig1,
                           vmax=5 * sig1)
                tag = '%s W%i' % (tile.coadd_id, band)
                plt.suptitle(tag)
                ps.savefig()
                plt.clf()
                ha = dict(range=(-5, 10), bins=100, histtype='step')
                plt.hist((tim.getImage() * tim.inverr)[tim.inverr > 0].ravel(),
                         color='b',
                         label='Original',
                         **ha)
                plt.hist(((tim.getImage() - bg) *
                          tim.inverr)[tim.inverr > 0].ravel(),
                         color='g',
                         label='Minus Background',
                         **ha)
                plt.axvline(0, color='k', alpha=0.5)
                plt.xlabel('Per-pixel intensity (Sigma)')
                plt.legend()
                plt.title(tag + ': background')
                ps.savefig()

            # Actually subtract the background!
            tim.data -= bg

        # Floor the per-pixel variances,
        # and add Poisson contribution from sources
        if band in [1, 2]:
            # in Vega nanomaggies per pixel
            floor_sigma = {1: 0.5, 2: 2.0}
            poissons = {1: 0.15, 2: 0.3}
            with np.errstate(divide='ignore'):
                new_ie = 1. / np.sqrt(
                    (1. / tim.inverr)**2 + floor_sigma[band] +
                    poissons[band]**2 * np.maximum(0., tim.data))
            new_ie[tim.inverr == 0] = 0.

            if plots:
                plt.clf()
                plt.plot((1. / tim.inverr[tim.inverr > 0]).ravel(),
                         (1. / new_ie[tim.inverr > 0]).ravel(), 'b.')
                plt.title('unWISE per-pixel error: %s band %i' %
                          (tile.coadd_id, band))
                plt.xlabel('original')
                plt.ylabel('floored')
                ps.savefig()

            assert (np.all(np.isfinite(new_ie)))
            assert (np.all(new_ie >= 0.))
            tim.inverr = new_ie

            # Expand a 3-pixel radius around weight=0 (saturated) pixels
            # from Eddie via crowdsource
            # https://github.com/schlafly/crowdsource/blob/7069da3e7d9d3124be1cbbe1d21ffeb63fc36dcc/python/wise_proc.py#L74
            ## FIXME -- W3/W4 ??
            satlimit = 85000
            msat = ((tim.data > satlimit) | ((tim.nims == 0) &
                                             (tim.nuims > 1)))
            from scipy.ndimage.morphology import binary_dilation
            xx, yy = np.mgrid[-3:3 + 1, -3:3 + 1]
            dilate = xx**2 + yy**2 <= 3**2
            msat = binary_dilation(msat, dilate)
            nbefore = np.sum(tim.inverr == 0)
            tim.inverr[msat] = 0
            nafter = np.sum(tim.inverr == 0)
            debug('Masking an additional', (nafter - nbefore),
                  'near-saturated pixels in unWISE', tile.coadd_id, 'band',
                  band)

        # Read mask file?
        if get_masks:
            from astrometry.util.resample import resample_with_wcs, OverlapError
            # unwise_dir can be a colon-separated list of paths
            tilemask = None
            for d in tile.unwise_dir.split(':'):
                fn = os.path.join(d, tile.coadd_id[:3], tile.coadd_id,
                                  'unwise-%s-msk.fits.gz' % tile.coadd_id)
                if os.path.exists(fn):
                    debug('Reading unWISE mask file', fn)
                    x0, x1, y0, y1 = tim.roi
                    tilemask = fitsio.FITS(fn)[0][y0:y1, x0:x1]
                    break
            if tilemask is None:
                info('unWISE mask file for tile', tile.coadd_id,
                     'does not exist')
            else:
                try:
                    tanwcs = tim.wcs.wcs
                    assert (tanwcs.shape == tilemask.shape)
                    Yo, Xo, Yi, Xi, _ = resample_with_wcs(get_masks,
                                                          tanwcs,
                                                          intType=np.int16)
                    # Only deal with mask pixels that are set.
                    I, = np.nonzero(tilemask[Yi, Xi] > 0)
                    # Trim to unique area for this tile
                    rr, dd = get_masks.pixelxy2radec(Xo[I] + 1, Yo[I] + 1)
                    good = radec_in_unique_area(rr, dd, tile.ra1, tile.ra2,
                                                tile.dec1, tile.dec2)
                    I = I[good]
                    maskmap[Yo[I], Xo[I]] = tilemask[Yi[I], Xi[I]]
                except OverlapError:
                    # Shouldn't happen by this point
                    print('Warning: no overlap between WISE tile',
                          tile.coadd_id, 'and brick')

            if plots:
                plt.clf()
                plt.imshow(tilemask, interpolation='nearest', origin='lower')
                plt.title('Tile %s: mask' % tile.coadd_id)
                ps.savefig()
                plt.clf()
                plt.imshow(maskmap, interpolation='nearest', origin='lower')
                plt.title('Tile %s: accumulated maskmap' % tile.coadd_id)
                ps.savefig()

        # The tiles have some overlap, so zero out pixels outside the
        # tile's unique area.
        th, tw = tim.shape
        xx, yy = np.meshgrid(np.arange(tw), np.arange(th))
        rr, dd = tim.wcs.wcs.pixelxy2radec(xx + 1, yy + 1)
        unique = radec_in_unique_area(rr, dd, tile.ra1, tile.ra2, tile.dec1,
                                      tile.dec2)
        debug('Tile', tile.coadd_id, '- total of', np.sum(unique),
              'unique pixels out of', len(unique.flat), 'total pixels')
        if get_models:
            # Save the inverr before blanking out non-unique pixels, for making coadds with no gaps!
            # (actually, slightly more subtly, expand unique area by 1 pixel)
            from scipy.ndimage.morphology import binary_dilation
            du = binary_dilation(unique)
            tim.coadd_inverr = tim.inverr * du
        tim.inverr[unique == False] = 0.
        del xx, yy, rr, dd, unique

        if plots:
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(tim.getImage() * (tim.inverr > 0),
                       interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=-3 * sig1,
                       vmax=10 * sig1)
            plt.colorbar()
            tag = '%s W%i' % (tile.coadd_id, band)
            plt.title('%s: tim data (unique)' % tag)
            ps.savefig()

        if pixelized_psf:
            from unwise_psf import unwise_psf
            if (band == 1) or (band == 2):
                # we only have updated PSFs for W1 and W2
                psfimg = unwise_psf.get_unwise_psf(band,
                                                   tile.coadd_id,
                                                   modelname='neo6_unwisecat')
            else:
                psfimg = unwise_psf.get_unwise_psf(band, tile.coadd_id)

            if band == 4:
                # oversample (the unwise_psf models are at native W4 5.5"/pix,
                # while the unWISE coadds are made at 2.75"/pix.
                ph, pw = psfimg.shape
                subpsf = np.zeros((ph * 2 - 1, pw * 2 - 1), np.float32)
                from astrometry.util.util import lanczos3_interpolate
                xx, yy = np.meshgrid(
                    np.arange(0., pw - 0.51, 0.5, dtype=np.float32),
                    np.arange(0., ph - 0.51, 0.5, dtype=np.float32))
                xx = xx.ravel()
                yy = yy.ravel()
                ix = xx.astype(np.int32)
                iy = yy.astype(np.int32)
                dx = (xx - ix).astype(np.float32)
                dy = (yy - iy).astype(np.float32)
                psfimg = psfimg.astype(np.float32)
                rtn = lanczos3_interpolate(ix, iy, dx, dy, [subpsf.flat],
                                           [psfimg])

                if plots:
                    plt.clf()
                    plt.imshow(psfimg, interpolation='nearest', origin='lower')
                    plt.title('Original PSF model')
                    ps.savefig()
                    plt.clf()
                    plt.imshow(subpsf, interpolation='nearest', origin='lower')
                    plt.title('Subsampled PSF model')
                    ps.savefig()

                psfimg = subpsf
                del xx, yy, ix, iy, dx, dy

            from tractor.psf import PixelizedPSF
            psfimg /= psfimg.sum()
            fluxrescales = {1: 1.04, 2: 1.005, 3: 1.0, 4: 1.0}
            psfimg *= fluxrescales[band]
            tim.psf = PixelizedPSF(psfimg)

        if psf_broadening is not None and not pixelized_psf:
            # psf_broadening is a factor by which the PSF FWHMs
            # should be scaled; the PSF is a little wider
            # post-reactivation.
            psf = tim.getPsf()
            from tractor import GaussianMixturePSF
            if isinstance(psf, GaussianMixturePSF):
                debug('Broadening PSF: from', psf)
                p0 = psf.getParams()
                pnames = psf.getParamNames()
                p1 = [
                    p * psf_broadening**2 if 'var' in name else p
                    for (p, name) in zip(p0, pnames)
                ]
                psf.setParams(p1)
                debug('Broadened PSF:', psf)
            else:
                print(
                    'WARNING: cannot apply psf_broadening to WISE PSF of type',
                    type(psf))

        wcs = tim.wcs.wcs
        _, fx, fy = wcs.radec2pixelxy(ra, dec)
        x = np.round(fx - 1.).astype(int)
        y = np.round(fy - 1.).astype(int)
        good = (x >= 0) * (x < tw) * (y >= 0) * (y < th)
        # Which sources are in this brick's unique area?
        usrc = radec_in_unique_area(ra, dec, tile.ra1, tile.ra2, tile.dec1,
                                    tile.dec2)
        I, = np.nonzero(good * usrc)

        nexp[I] = tim.nuims[y[I], x[I]]
        if hasattr(tim, 'mjdmin') and hasattr(tim, 'mjdmax'):
            mjd[I] = (tim.mjdmin + tim.mjdmax) / 2.
        phot.wise_coadd_id[I] = tile.coadd_id
        phot.wise_x[I] = fx[I] - 1.
        phot.wise_y[I] = fy[I] - 1.

        central_flux[I] = tim.getImage()[y[I], x[I]]
        del x, y, good, usrc

        # PSF norm for depth
        psf = tim.getPsf()
        h, w = tim.shape
        patch = psf.getPointSourcePatch(h // 2, w // 2).patch
        psfnorm = np.sqrt(np.sum(patch**2))
        # To handle zero-depth, we return 1/nanomaggies^2 units rather than mags.
        # In the small empty patches of the sky (eg W4 in 0922p702), we get sig1 = NaN
        if np.isfinite(tim.sig1):
            phot.get('psfdepth_%s' % wband)[I] = 1. / (tim.sig1 / psfnorm)**2

        tim.tile = tile
        tims.append(tim)

    if plots:
        plt.clf()
        mn, mx = 0.1, 20000
        plt.hist(np.log10(np.clip(central_flux, mn, mx)),
                 bins=100,
                 range=(np.log10(mn), np.log10(mx)))
        logt = np.arange(0, 5)
        plt.xticks(logt, ['%i' % i for i in 10.**logt])
        plt.title('Central fluxes (W%i)' % band)
        plt.axvline(np.log10(20000), color='k')
        plt.axvline(np.log10(1000), color='k')
        ps.savefig()

    # Eddie's non-secret recipe:
    #- central pixel <= 1000: 19x19 pix box size
    #- central pixel in 1000 - 20000: 59x59 box size
    #- central pixel > 20000 or saturated: 149x149 box size
    #- object near "bright star": 299x299 box size
    nbig = nmedium = nsmall = 0
    for src, cflux in zip(cat, central_flux):
        if cflux > 20000:
            R = 100
            nbig += 1
        elif cflux > 1000:
            R = 30
            nmedium += 1
        else:
            R = 15
            nsmall += 1
        if isinstance(src, PointSource):
            src.fixedRadius = R
        else:
            ### FIXME -- sizes for galaxies..... can we set PSF size separately?
            galrad = 0
            # RexGalaxy is a subclass of ExpGalaxy
            if isinstance(src, (ExpGalaxy, DevGalaxy, SersicGalaxy)):
                galrad = src.shape.re
            pixscale = 2.75
            src.halfsize = int(np.hypot(R, galrad * 5 / pixscale))
    debug('Set WISE source sizes:', nbig, 'big', nmedium, 'medium', nsmall,
          'small')

    tractor = Tractor(tims, cat)
    if use_ceres:
        from tractor.ceres_optimizer import CeresOptimizer
        tractor.optimizer = CeresOptimizer(BW=ceres_block, BH=ceres_block)
    tractor.freezeParamsRecursive('*')
    tractor.thawPathsTo(wanyband)

    t0 = Time()
    R = tractor.optimize_forced_photometry(fitstats=True,
                                           variance=True,
                                           shared_params=False,
                                           wantims=wantims)
    info(tag + 'unWISE forced photometry took', Time() - t0)

    if use_ceres:
        term = R.ceres_status['termination']
        # Running out of memory can cause failure to converge and term
        # status = 2.  Fail completely in this case.
        if term != 0:
            info(tag + 'Ceres termination status:', term)
            raise RuntimeError('Ceres terminated with status %i' % term)

    if wantims:
        ims1 = R.ims1
        # can happen if empty source list (we still want to generate coadds)
        if ims1 is None:
            ims1 = R.ims0

    flux_invvars = R.IV
    if R.fitstats is not None:
        for k in fskeys:
            x = getattr(R.fitstats, k)
            fitstats[k] = np.array(x).astype(np.float32)

    if save_fits:
        for i, tim in enumerate(tims):
            tile = tim.tile
            (dat, mod, _, chi, _) = ims1[i]
            wcshdr = fitsio.FITSHDR()
            tim.wcs.wcs.add_to_header(wcshdr)
            tag = 'fit-%s-w%i' % (tile.coadd_id, band)
            fitsio.write('%s-data.fits' % tag,
                         dat,
                         clobber=True,
                         header=wcshdr)
            fitsio.write('%s-mod.fits' % tag, mod, clobber=True, header=wcshdr)
            fitsio.write('%s-chi.fits' % tag, chi, clobber=True, header=wcshdr)

    if plots:
        # Create models for just the brightest sources
        bright_cat = [
            src for src in cat if src.getBrightness().getBand(wanyband) > 1000
        ]
        debug('Bright soures:', len(bright_cat))
        btr = Tractor(tims, bright_cat)
        for tim in tims:
            mod = btr.getModelImage(tim)
            tile = tim.tile
            tag = '%s W%i' % (tile.coadd_id, band)
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(mod,
                       interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=-3 * sig1,
                       vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: bright-star models' % tag)
            ps.savefig()

    if get_models:
        for i, tim in enumerate(tims):
            tile = tim.tile
            (dat, mod, _, _, _) = ims1[i]
            models.append(
                (tile.coadd_id, band, tim.wcs.wcs, dat, mod, tim.coadd_inverr))

    if plots:
        for i, tim in enumerate(tims):
            tile = tim.tile
            tag = '%s W%i' % (tile.coadd_id, band)
            (dat, mod, _, chi, _) = ims1[i]
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(dat,
                       interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=-3 * sig1,
                       vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: data' % tag)
            ps.savefig()
            plt.clf()
            plt.imshow(mod,
                       interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=-3 * sig1,
                       vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: model' % tag)
            ps.savefig()

            plt.clf()
            plt.imshow(chi,
                       interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=-5,
                       vmax=+5)
            plt.colorbar()
            plt.title('%s: chi' % tag)
            ps.savefig()

    nm = np.array([src.getBrightness().getBand(wanyband) for src in cat])
    nm_ivar = flux_invvars
    # Sources out of bounds, eg, never change from their initial
    # fluxes.  Zero them out instead.
    nm[nm_ivar == 0] = 0.

    phot.set('flux_%s' % wband, nm.astype(np.float32))
    phot.set('flux_ivar_%s' % wband, nm_ivar.astype(np.float32))
    for k in fskeys:
        phot.set(k + '_' + wband,
                 fitstats.get(k, np.zeros(len(phot), np.float32)))
    phot.set('nobs_%s' % wband, nexp)
    phot.set('mjd_%s' % wband, mjd)

    rtn = wphotduck()
    rtn.phot = phot
    rtn.models = None
    rtn.maskmap = None
    if get_models:
        rtn.models = models
    if get_masks:
        rtn.maskmap = maskmap
    return rtn
Пример #7
0
def main():
    import argparse

    parser = argparse.ArgumentParser(
        description='This script creates small self-contained data sets that '
        'are useful for test cases of the pipeline codes.')

    parser.add_argument('ccds', help='CCDs table describing region to grab')
    parser.add_argument('outdir', help='Output directory name')
    parser.add_argument('brick', help='Brick containing these images')

    parser.add_argument('--wise', help='For WISE outputs, give the path to a WCS file describing the sub-brick region of interest, eg, a coadd image')
    parser.add_argument('--fpack', action='store_true', default=False)
    parser.add_argument('--pad', action='store_true', default=False,
                        help='Keep original image size, but zero out pixels outside ROI')
    
    args = parser.parse_args()

    C = fits_table(args.ccds)
    print(len(C), 'CCDs in', args.ccds)
    C.camera = np.array([c.strip() for c in C.camera])
    
    survey = LegacySurveyData()
    bricks = survey.get_bricks_readonly()
    outbricks = bricks[np.array([n == args.brick for n in bricks.brickname])]
    assert(len(outbricks) == 1)
    
    outsurvey = LegacySurveyData(survey_dir = args.outdir)
    trymakedirs(args.outdir)
    outbricks.writeto(os.path.join(args.outdir, 'survey-bricks.fits.gz'))

    targetwcs = wcs_for_brick(outbricks[0])
    H,W = targetwcs.shape
    
    tycho = fits_table(os.path.join(survey.get_survey_dir(), 'tycho2.fits.gz'))
    print('Read', len(tycho), 'Tycho-2 stars')
    ok,tx,ty = targetwcs.radec2pixelxy(tycho.ra, tycho.dec)
    margin = 100
    tycho.cut(ok * (tx > -margin) * (tx < W+margin) *
              (ty > -margin) * (ty < H+margin))
    print('Cut to', len(tycho), 'Tycho-2 stars within brick')
    del ok,tx,ty
    tycho.writeto(os.path.join(args.outdir, 'tycho2.fits.gz'))
    
    outccds = C.copy()
    for c in ['ccd_x0', 'ccd_x1', 'ccd_y0', 'ccd_y1',
              'brick_x0', 'brick_x1', 'brick_y0', 'brick_y1',
              'plver', 'skyver', 'wcsver', 'psfver', 'skyplver', 'wcsplver',
              'psfplver' ]:
        outccds.delete_column(c)
    outccds.image_hdu[:] = 1

    # Convert to list to avoid truncating filenames
    outccds.image_filename = [fn for fn in outccds.image_filename]
    
    for iccd,ccd in enumerate(C):

        decam = (ccd.camera.strip() == 'decam')
        bok   = (ccd.camera.strip() == '90prime')

        im = survey.get_image_object(ccd)
        print('Got', im)
        slc = (slice(ccd.ccd_y0, ccd.ccd_y1), slice(ccd.ccd_x0, ccd.ccd_x1))
        tim = im.get_tractor_image(slc, pixPsf=True, splinesky=True,
                                   subsky=False, nanomaggies=False)
        print('Tim:', tim.shape)

        psf = tim.getPsf()
        print('PSF:', psf)
        psfex = psf.psfex
        print('PsfEx:', psfex)

        outim = outsurvey.get_image_object(ccd)
        print('Output image:', outim)

        print('Image filename:', outim.imgfn)
        trymakedirs(outim.imgfn, dir=True)

        imgdata = tim.getImage()
        dqdata = tim.dq
        if decam:
            # DECam-specific code remaps the DQ codes... re-read raw
            print('Reading data quality from', im.dqfn, 'hdu', im.hdu)
            dqdata = im._read_fits(im.dqfn, im.hdu, slice=tim.slice)
        ivdata = tim.getInvvar()

        if args.pad:
            # Create zero image of full size, copy in data.
            fullsize = np.zeros((ccd.height, ccd.width), imgdata.dtype)
            fullsize[slc] = imgdata
            imgdata = fullsize

            fullsize = np.zeros((ccd.height, ccd.width), dqdata.dtype)
            fullsize[slc] = dqdata
            dqdata = fullsize

            fullsize = np.zeros((ccd.height, ccd.width), ivdata.dtype)
            fullsize[slc] = ivdata
            ivdata = fullsize
            
        else:
            # Adjust the header WCS by x0,y0
            crpix1 = tim.hdr['CRPIX1']
            crpix2 = tim.hdr['CRPIX2']
            tim.hdr['CRPIX1'] = crpix1 - ccd.ccd_x0
            tim.hdr['CRPIX2'] = crpix2 - ccd.ccd_y0

        # Add image extension to filename
        # fitsio doesn't compress .fz by default, so drop .fz suffix
        
        outim.imgfn = outim.imgfn.replace('.fits', '-%s.fits' % im.ccdname)
        if not args.fpack:
            outim.imgfn = outim.imgfn.replace('.fits.fz', '.fits')

        # if bok:
        #     outim.whtfn  = outim.whtfn .replace('.wht.fits', '-%s.wht.fits' % im.ccdname)
        #     if not args.fpack:
        #         outim.whtfn  = outim.whtfn .replace('.fits.fz', '.fits')
        # else:
        if True:
            outim.wtfn  = outim.wtfn .replace('.fits', '-%s.fits' % im.ccdname)
            if not args.fpack:
                outim.wtfn  = outim.wtfn .replace('.fits.fz', '.fits')

        if outim.dqfn is not None:
            outim.dqfn  = outim.dqfn .replace('.fits', '-%s.fits' % im.ccdname)
            if not args.fpack:
                outim.dqfn  = outim.dqfn .replace('.fits.fz', '.fits')

        if bok:
            outim.psffn = outim.psffn.replace('.psf', '-%s.psf' % im.ccdname)

        ccdfn = outim.imgfn
        ccdfn = ccdfn.replace(outsurvey.get_image_dir(),'')
        if ccdfn.startswith('/'):
            ccdfn = ccdfn[1:]
        outccds.image_filename[iccd] = ccdfn

        print('Changed output filenames to:')
        print(outim.imgfn)
        print(outim.dqfn)

        ofn = outim.imgfn
        if args.fpack:
            f,ofn = tempfile.mkstemp(suffix='.fits')
            os.close(f)
        fitsio.write(ofn, None, header=tim.primhdr, clobber=True)
        fitsio.write(ofn, imgdata, header=tim.hdr, extname=ccd.ccdname)

        if args.fpack:
            cmd = 'fpack -qz 8 -S %s > %s && rm %s' % (ofn, outim.imgfn, ofn)
            print('Running:', cmd)
            rtn = os.system(cmd)
            assert(rtn == 0)

        h,w = tim.shape
        if not args.pad:
            outccds.width[iccd] = w
            outccds.height[iccd] = h
            outccds.crpix1[iccd] = crpix1 - ccd.ccd_x0
            outccds.crpix2[iccd] = crpix2 - ccd.ccd_y0

        wcs = Tan(*[float(x) for x in
                    [ccd.crval1, ccd.crval2, ccd.crpix1, ccd.crpix2,
                     ccd.cd1_1, ccd.cd1_2, ccd.cd2_1, ccd.cd2_2, ccd.width, ccd.height]])

        if args.pad:
            subwcs = wcs
        else:
            subwcs = wcs.get_subimage(ccd.ccd_x0, ccd.ccd_y0, w, h)
            outccds.ra[iccd],outccds.dec[iccd] = subwcs.radec_center()

        #if not bok:
        if True:
            print('Weight filename:', outim.wtfn)
            wfn = outim.wtfn
        # else:
        #     print('Weight filename:', outim.whtfn)
        #     wfn = outim.whtfn

        trymakedirs(wfn, dir=True)

        ofn = wfn
        if args.fpack:
            f,ofn = tempfile.mkstemp(suffix='.fits')
            os.close(f)

        fitsio.write(ofn, None, header=tim.primhdr, clobber=True)
        fitsio.write(ofn, ivdata, header=tim.hdr, extname=ccd.ccdname)

        if args.fpack:
            cmd = 'fpack -qz 8 -S %s > %s && rm %s' % (ofn, wfn, ofn)
            print('Running:', cmd)
            rtn = os.system(cmd)
            assert(rtn == 0)

        if outim.dqfn is not None:
            print('DQ filename', outim.dqfn)
            trymakedirs(outim.dqfn, dir=True)

            ofn = outim.dqfn
            if args.fpack:
                f,ofn = tempfile.mkstemp(suffix='.fits')
                os.close(f)

            fitsio.write(ofn, None, header=tim.primhdr, clobber=True)
            fitsio.write(ofn, dqdata, header=tim.hdr, extname=ccd.ccdname)

            if args.fpack:
                cmd = 'fpack -g -q 0 -S %s > %s && rm %s' % (ofn, outim.dqfn, ofn)
                print('Running:', cmd)
                rtn = os.system(cmd)
                assert(rtn == 0)

        print('PSF filename:', outim.psffn)
        trymakedirs(outim.psffn, dir=True)
        psfex.writeto(outim.psffn)

        if not bok:
            print('Sky filename:', outim.splineskyfn)
            sky = tim.getSky()
            print('Sky:', sky)
            trymakedirs(outim.splineskyfn, dir=True)
            sky.write_fits(outim.splineskyfn)

    outccds.writeto(os.path.join(args.outdir, 'survey-ccds-1.fits.gz'))

    # WISE
    if args.wise is not None:
        from wise.forcedphot import unwise_tiles_touching_wcs
        from wise.unwise import (unwise_tile_wcs, unwise_tiles_touching_wcs,
                                 get_unwise_tractor_image, get_unwise_tile_dir)
        # Read WCS...
        print('Reading TAN wcs header from', args.wise)
        targetwcs = Tan(args.wise)
        tiles = unwise_tiles_touching_wcs(targetwcs)
        print('Cut to', len(tiles), 'unWISE tiles')
        H,W = targetwcs.shape
        r,d = targetwcs.pixelxy2radec(np.array([1,   W,   W/2, W/2]),
                                      np.array([H/2, H/2, 1,   H  ]))
        roiradec = [r[0], r[1], d[2], d[3]]

        unwise_dir = os.environ['UNWISE_COADDS_DIR']
        wise_out = os.path.join(args.outdir, 'images', 'unwise')
        print('Will write WISE outputs to', wise_out)

        unwise_tr_dir = os.environ['UNWISE_COADDS_TIMERESOLVED_DIR']
        wise_tr_out = os.path.join(args.outdir, 'images', 'unwise-tr')
        print('Will write WISE time-resolved outputs to', wise_tr_out)

        W = fits_table(os.path.join(unwise_tr_dir, 'time_resolved_neo1-atlas.fits'))
        print('Read', len(W), 'time-resolved WISE coadd tiles')
        W.cut(np.array([t in tiles.coadd_id for t in W.coadd_id]))
        print('Cut to', len(W), 'time-resolved vs', len(tiles), 'full-depth')

        # Write the time-resolved index subset.
        W.writeto(os.path.join(wise_tr_out, 'time_resolved_neo1-atlas.fits'))

        # this ought to be enough for anyone =)
        Nepochs = 5

        wisedata = []

        # full depth
        for band in [1,2,3,4]:
            wisedata.append((unwise_dir, wise_out, tiles.coadd_id, band))

        # time-resolved
        for band in [1,2]:
            # W1 is bit 0 (value 0x1), W2 is bit 1 (value 0x2)
            bitmask = (1 << (band-1))
            for e in range(Nepochs):
                # Which tiles have images for this epoch?
                I = np.flatnonzero(W.epoch_bitmask[:,e] & bitmask)
                if len(I) == 0:
                    continue
                print('Epoch %i: %i tiles:' % (e, len(I)), W.coadd_id[I])
                edir = os.path.join(unwise_tr_dir, 'e%03i' % e)
                eoutdir = os.path.join(wise_tr_out, 'e%03i' % e)
                wisedata.append((edir, eoutdir, tiles.coadd_id[I], band))

        wrote_masks = set()

        for indir, outdir, tiles, band in wisedata:
            for tile in tiles:
                wanyband = 'w'
                tim = get_unwise_tractor_image(indir, tile, band,
                                               bandname=wanyband, roiradecbox=roiradec)
                print('Got unWISE tim', tim)
                print(tim.shape)
                
                thisdir = get_unwise_tile_dir(outdir, tile)
                print('Directory for this WISE tile:', thisdir)
                base = os.path.join(thisdir, 'unwise-%s-w%i-' % (tile, band))
                print('Base filename:', base)

                masked = True
                mu = 'm' if masked else 'u'

                imfn = base + 'img-%s.fits'       % mu
                ivfn = base + 'invvar-%s.fits.gz' % mu
                nifn = base + 'n-%s.fits.gz'      % mu
                nufn = base + 'n-u.fits.gz'

                #print('WISE image header:', tim.hdr)

                # Adjust the header WCS by x0,y0
                wcs = tim.wcs.wcs
                tim.hdr['CRPIX1'] = wcs.crpix[0]
                tim.hdr['CRPIX2'] = wcs.crpix[1]

                H,W = tim.shape
                tim.hdr['IMAGEW'] = W
                tim.hdr['IMAGEH'] = H

                print('WCS:', wcs)
                print('Header CRPIX', tim.hdr['CRPIX1'], tim.hdr['CRPIX2'])

                trymakedirs(imfn, dir=True)
                fitsio.write(imfn, tim.getImage(), header=tim.hdr, clobber=True)
                print('Wrote', imfn)
                fitsio.write(ivfn, tim.getInvvar(), header=tim.hdr, clobber=True)
                print('Wrote', ivfn)
                fitsio.write(nifn, tim.nims, header=tim.hdr, clobber=True)
                print('Wrote', nifn)
                fitsio.write(nufn, tim.nuims, header=tim.hdr, clobber=True)
                print('Wrote', nufn)

                if not (indir,tile) in wrote_masks:
                    print('Looking for mask file for', indir, tile)
                    # record that we tried this dir/tile combo
                    wrote_masks.add((indir,tile))
                    for idir in indir.split(':'):
                        tdir = get_unwise_tile_dir(idir, tile)
                        maskfn = 'unwise-%s-msk.fits.gz' % tile
                        fn = os.path.join(tdir, maskfn)
                        print('Mask file:', fn)
                        if os.path.exists(fn):
                            print('Reading', fn)
                            (x0,x1,y0,y1) = tim.roi
                            roislice = (slice(y0,y1), slice(x0,x1))
                            F = fitsio.FITS(fn)[0]
                            hdr = F.read_header()
                            M = F[roislice]
                            outfn = os.path.join(thisdir, maskfn)
                            fitsio.write(outfn, M, header=tim.hdr, clobber=True)
                            print('Wrote', outfn)
                            break

    outC = outsurvey.get_ccds_readonly()
    for iccd,ccd in enumerate(outC):
        outim = outsurvey.get_image_object(ccd)
        print('Got output image:', outim)
        otim = outim.get_tractor_image(pixPsf=True, splinesky=True)
        print('Got output tim:', otim)