def test_two_ramps_smoke_test(self): mdl = goodVehicle() V = np.hstack((np.r_[0:100:2], np.r_[100:0:-2])) mdl['cycle_run'] = {'v_target': V} experiment = Experiment(mdl) mdl = experiment.run()
def test_badCycle(self): mdl = goodVehicle() mdl['params'] = params = {} mdl['cycle_run'] = 1 with assertRaisesRegex(self, PandasError, 'DataFrame constructor not properly called'): experiment = Experiment(mdl) mdl = experiment.run()
def test_two_ramps_with_slope(self): V = np.hstack((np.r_[0:100:2], np.r_[100:0:-2])) SLOPE = np.random.rand(V.shape[0]) v_columns = ('v_class', 'v_target') for col in v_columns: mdl = goodVehicle() mdl['cycle_run'] = pd.DataFrame({ col: V, 'slope': SLOPE, }) proc = Experiment(mdl) mdl = proc.run() #print(pd.DataFrame(mdl['cycle_run'])) cycle_run = mdl['cycle_run'] self.assertIn('slope', cycle_run) self.assertIn('gears', cycle_run) for vcol in v_columns: npt.assert_array_equal(V, cycle_run[vcol], "V_Column(%s) not overriden!"%vcol)
def test_two_ramps_with_slope(self): V = np.hstack((np.r_[0:100:2], np.r_[100:0:-2])) SLOPE = np.random.rand(V.shape[0]) v_columns = ('v_class', 'v_target') for col in v_columns: mdl = goodVehicle() mdl['cycle_run'] = pd.DataFrame({ col: V, 'slope': SLOPE, }) proc = Experiment(mdl) mdl = proc.run() #print(pd.DataFrame(mdl['cycle_run'])) cycle_run = mdl['cycle_run'] self.assertIn('slope', cycle_run) self.assertIn('gears', cycle_run) for vcol in v_columns: npt.assert_array_equal(V, cycle_run[vcol], "V_Column(%s) not overriden!" % vcol)