def test_criteria_blank_pr_full_wind(fake_pr_matrix, fake_wdir_matrix): criteria = criteria_generator(wd_min=165, wd_max=200) passing_pr = criteria['precip'](fake_pr_matrix) passing_wd = criteria['wind_dir'](fake_wdir_matrix) truth_pr = np.ones(fake_pr_matrix.shape) truth_wdir = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]]) truth_combined = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]]) assert_almost_equal(truth_pr, passing_pr) assert_almost_equal(truth_wdir, passing_wd) assert_almost_equal(truth_combined, (passing_pr & passing_wd))
def test_criteria_full_pr_max_wind(fake_pr_matrix, fake_wdir_matrix): criteria = criteria_generator(pr_min=2, pr_max=7, wd_max=90) passing_pr = criteria['precip'](fake_pr_matrix) passing_wd = criteria['wind_dir'](fake_wdir_matrix) truth_pr = np.array([[0, 0, 1, 1], [1, 1, 0, 0], [0, 0, 1, 1], [1, 1, 1, 0], [1, 1, 0, 0]]) truth_wdir = np.array([[0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 1]]) truth_combined = np.array([[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) assert_almost_equal(truth_pr, passing_pr) assert_almost_equal(truth_wdir, passing_wd) assert_almost_equal(truth_combined, (passing_pr & passing_wd))
def test_criteria_max_pr_min_wind(fake_pr_matrix, fake_wdir_matrix): # TODO add testing for the criteria dic criteria = criteria_generator(pr_max=5, wd_min=270) passing_pr = criteria['precip'](fake_pr_matrix) passing_wd = criteria['wind_dir'](fake_wdir_matrix) truth_pr = np.array([[1, 1, 0, 1], [1, 1, 0, 1], [0, 0, 0, 1], [0, 0, 1, 1], [0, 0, 1, 1]]) truth_wdir = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [1, 1, 0, 0]]) truth_combined = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 0, 0, 0]]) assert_almost_equal(truth_pr, passing_pr) assert_almost_equal(truth_wdir, passing_wd) assert_almost_equal(truth_combined, (passing_pr & passing_wd))
def test_monsoon_compute_nc_input(precip_rate_ncdata_access13, wdir_ncdata_access13, truth_monsoon_indx_access13): criteria = criteria_generator(pr_min=5, wd_min=180, wd_max=270) monsoon = MonsoonData.compute(precip_rate_ncdata_access13, wdir_ncdata_access13, criteria) assert_almost_equal(truth_monsoon_indx_access13, monsoon.variable) assert monsoon.var_name == 'monsoon' assert_almost_equal(monsoon.lats, precip_rate_ncdata_access13.lats) assert monsoon.time_units == wdir_ncdata_access13.time_units assert monsoon.globalattrs[ 'frequency'] == precip_rate_ncdata_access13.globalattrs['frequency'] assert monsoon.globalattrs[ 'institute_id'] == wdir_ncdata_access13.globalattrs['institute_id'] assert monsoon.globalattrs['monsoon_criteria'] == criteria['summary_dict']
def test_monsoon_compute_misaligned_models(precip_rate_ncdata_access13, wdir_ncdata_cnrmcm5): with pytest.raises(TypeError): MonsoonData.compute( precip_rate_ncdata_access13, wdir_ncdata_cnrmcm5, criteria_generator(pr_min=5, wd_min=180, wd_max=270))
def test_monsoon_compute_wdir_typeerror(precip_rate_ncdata_access13, path_uas_access13): with pytest.raises(TypeError): MonsoonData.compute( precip_rate_ncdata_access13, path_uas_access13, criteria_generator(pr_min=5, wd_min=180, wd_max=270))
# Generate precipitation rate with nc.Dataset(precip_test_file_lin, 'r') as p_flux_reader: print(p_flux_reader.__class__) p_rate = NCdata.pr_rate_from_flux(p_flux_reader) p_rate_path = os.path.join(folder, r"created/pr_from_flux_ACCESS1-3.nc") # p_rate.write(p_rate_path) # Generate wind direction with nc.Dataset(uas_test_file_lin, 'r') as uas_reader, \ nc.Dataset(vas_test_file_lin, 'r') as vas_reader: wdir = NCdata.wind_dir_from_components(uas_reader, vas_reader) wdir_path = os.path.join(folder, r"created/wdir_ACCESS1-3.nc") # wdir.write(wdir_path) # Compute monsoon criteria = criteria_generator(pr_min=5, wd_min=180, wd_max=270) with nc.Dataset(p_rate_path, 'r') as pr_reader, \ nc.Dataset(wdir_path, 'r') as wd_reader: output = MonsoonData.compute(pr_reader, wd_reader, criteria) filepath = '/home/rwegener/repos/wnpmonsoon/tests/data/created/monsoon_index_access13_pr5plus_180270wd_nomask.nc' # output.write(filepath) src = nc.Dataset(filepath, 'r') print(src.variables['monsoon'][:]) output.variable = output.variable * 5 from wnpmonsoon.netcdf import NetCDFWriter writer = NetCDFWriter(filepath)