def _template_runner(argv, environment, experiment, pipeline_options, cluster): print("Getting subjects from database...") # subjects = argv["--subjects"].split(',') subjects, subjects_sessions_dictionary = get_subjects_sessions_dictionary(argv['SUBJECTS'], experiment['cachedir'], experiment['resultdir'], environment['prefix'], experiment['dbfile'], argv['--use-sentinal'], argv['--use-shuffle'] ) # Build database before parallel section useSentinal = argv['--use-sentinal'] # Quick preliminary sanity check for thisSubject in subjects: if len(subjects_sessions_dictionary[thisSubject]) == 0: print("ERROR: subject {0} has no sessions found. Did you supply a valid subject id on the command line?".format(thisSubject) ) sys.exit(-1) for thisSubject in subjects: print("Processing atlas generation for this subject: {0}".format(thisSubject)) print("="*80) print("Copying Atlas directory and determining appropriate Nipype options...") subj_pipeline_options = nipype_options(argv, pipeline_options, cluster, experiment, environment) # Generate Nipype options print("Dispatching jobs to the system...") ###### ###### Now start workflow construction ###### # Set universal pipeline options nipype_config.update_config(subj_pipeline_options) ready_for_template_building = True for thisSession in subjects_sessions_dictionary[thisSubject]: path_test = os.path.join(experiment['previousresult'],'*/{0}/{1}/TissueClassify/t1_average_BRAINSABC.nii.gz'.format(thisSubject,thisSession)) t1_file_result = glob.glob(path_test) if len(t1_file_result) != 1: print("Incorrect number of t1 images found for data grabber {0}".format(t1_file_result)) print(" at path {0}".format(path_test)) ready_for_template_building = False if not ready_for_template_building: print("TEMPORARY SKIPPING: Not ready to process {0}".format(thisSubject)) continue base_output_directory = os.path.join(subj_pipeline_options['logging']['log_directory'],thisSubject) template = pe.Workflow(name='SubjectAtlas_Template_'+thisSubject) template.base_dir = base_output_directory subjectNode = pe.Node(interface=IdentityInterface(fields=['subject']), run_without_submitting=True, name='99_subjectIterator') subjectNode.inputs.subject = thisSubject sessionsExtractorNode = pe.Node(Function(function=getSessionsFromSubjectDictionary, input_names=['subject_session_dictionary','subject'], output_names=['sessions']), run_without_submitting=True, name="99_sessionsExtractor") sessionsExtractorNode.inputs.subject_session_dictionary = subjects_sessions_dictionary baselineOptionalDG = pe.MapNode(nio.DataGrabber(infields=['subject','session'], outfields=[ 't2_average', 'pd_average', 'fl_average'], run_without_submitting=True ), run_without_submitting=True, iterfield=['session'], name='BaselineOptional_DG') baselineOptionalDG.inputs.base_directory = experiment['previousresult'] baselineOptionalDG.inputs.sort_filelist = True baselineOptionalDG.inputs.raise_on_empty = False baselineOptionalDG.inputs.template = '*' baselineOptionalDG.inputs.field_template = { 't2_average':'*/%s/%s/TissueClassify/t2_average_BRAINSABC.nii.gz', 'pd_average':'*/%s/%s/TissueClassify/pd_average_BRAINSABC.nii.gz', 'fl_average':'*/%s/%s/TissueClassify/fl_average_BRAINSABC.nii.gz' } baselineOptionalDG.inputs.template_args = { 't2_average':[['subject','session']], 'pd_average':[['subject','session']], 'fl_average':[['subject','session']] } baselineRequiredDG = pe.MapNode(nio.DataGrabber(infields=['subject','session'], outfields=['t1_average', 'brainMaskLabels', 'posteriorImages','passive_intensities','passive_masks', 'BCD_ACPC_Landmarks_fcsv'], run_without_submitting=True ), run_without_submitting=True, iterfield=['session'], name='Baseline_DG') baselineRequiredDG.inputs.base_directory = experiment['previousresult'] baselineRequiredDG.inputs.sort_filelist = True baselineRequiredDG.inputs.raise_on_empty = True baselineRequiredDG.inputs.template = '*' posterior_files = ['AIR', 'BASAL', 'CRBLGM', 'CRBLWM', 'CSF', 'GLOBUS', 'HIPPOCAMPUS', 'NOTCSF', 'NOTGM', 'NOTVB', 'NOTWM', 'SURFGM', 'THALAMUS', 'VB', 'WM'] passive_intensities_files = [ 'rho.nii.gz', 'phi.nii.gz', 'theta.nii.gz', 'l_thalamus_ProbabilityMap.nii.gz', 'r_accumben_ProbabilityMap.nii.gz', 'l_globus_ProbabilityMap.nii.gz', 'l_accumben_ProbabilityMap.nii.gz', 'l_caudate_ProbabilityMap.nii.gz', 'l_putamen_ProbabilityMap.nii.gz', 'r_thalamus_ProbabilityMap.nii.gz', 'r_putamen_ProbabilityMap.nii.gz', 'r_caudate_ProbabilityMap.nii.gz', 'r_hippocampus_ProbabilityMap.nii.gz', 'r_globus_ProbabilityMap.nii.gz', 'l_hippocampus_ProbabilityMap.nii.gz' ] passive_mask_files = [ 'template_WMPM2_labels.nii.gz', 'hncma_atlas.nii.gz', 'template_nac_labels.nii.gz', 'template_leftHemisphere.nii.gz', 'template_rightHemisphere.nii.gz', 'template_ventricles.nii.gz', 'template_headregion.nii.gz' ] baselineRequiredDG.inputs.field_template = {'t1_average':'*/%s/%s/TissueClassify/t1_average_BRAINSABC.nii.gz', 'brainMaskLabels':'*/%s/%s/TissueClassify/complete_brainlabels_seg.nii.gz', 'BCD_ACPC_Landmarks_fcsv':'*/%s/%s/ACPCAlign/BCD_ACPC_Landmarks.fcsv', 'posteriorImages':'*/%s/%s/TissueClassify/POSTERIOR_%s.nii.gz', 'passive_intensities':'*/%s/%s/WarpedAtlas2Subject/%s', 'passive_masks':'*/%s/%s/WarpedAtlas2Subject/%s', } baselineRequiredDG.inputs.template_args = {'t1_average':[['subject','session']], 'brainMaskLabels':[['subject','session']], 'BCD_ACPC_Landmarks_fcsv':[['subject','session']], 'posteriorImages':[['subject','session', posterior_files]], 'passive_intensities':[['subject','session', passive_intensities_files]], 'passive_masks':[['subject','session', passive_mask_files]] } MergeByExtendListElementsNode = pe.Node(Function(function=MergeByExtendListElements, input_names=['t1s', 't2s', 'pds', 'fls', 'labels', 'posteriors', 'passive_intensities', 'passive_masks' ], output_names=['ListOfImagesDictionaries', 'registrationImageTypes', 'interpolationMapping']), run_without_submitting=True, name="99_MergeByExtendListElements") template.connect([(subjectNode, baselineRequiredDG, [('subject', 'subject')]), (subjectNode, baselineOptionalDG, [('subject', 'subject')]), (subjectNode, sessionsExtractorNode, [('subject','subject')]), (sessionsExtractorNode, baselineRequiredDG, [('sessions', 'session')]), (sessionsExtractorNode, baselineOptionalDG, [('sessions', 'session')]), (baselineRequiredDG, MergeByExtendListElementsNode, [('t1_average', 't1s'), ('brainMaskLabels', 'labels'), (('posteriorImages', ConvertSessionsListOfPosteriorListToDictionaryOfSessionLists), 'posteriors') ]), (baselineOptionalDG, MergeByExtendListElementsNode, [ ('t2_average', 't2s'), ('pd_average', 'pds'), ('fl_average', 'fls') ]), (baselineRequiredDG, MergeByExtendListElementsNode, [ (('passive_intensities', ConvertSessionsListOfPosteriorListToDictionaryOfSessionLists), 'passive_intensities') ]), (baselineRequiredDG, MergeByExtendListElementsNode, [ (('passive_masks', ConvertSessionsListOfPosteriorListToDictionaryOfSessionLists), 'passive_masks') ]) ]) myInitAvgWF = pe.Node(interface=ants.AverageImages(), name='Atlas_antsSimpleAverage') # was 'Phase1_antsSimpleAverage' myInitAvgWF.inputs.dimension = 3 myInitAvgWF.inputs.normalize = True myInitAvgWF.inputs.num_threads = -1 template.connect(baselineRequiredDG, 't1_average', myInitAvgWF, "images") #################################################################################################### # TEMPLATE_BUILD_RUN_MODE = 'MULTI_IMAGE' # if numSessions == 1: # TEMPLATE_BUILD_RUN_MODE = 'SINGLE_IMAGE' #################################################################################################### CLUSTER_QUEUE=cluster['queue'] CLUSTER_QUEUE_LONG=cluster['long_q'] buildTemplateIteration1 = BAWantsRegistrationTemplateBuildSingleIterationWF('iteration01',CLUSTER_QUEUE,CLUSTER_QUEUE_LONG) # buildTemplateIteration2 = buildTemplateIteration1.clone(name='buildTemplateIteration2') buildTemplateIteration2 = BAWantsRegistrationTemplateBuildSingleIterationWF('Iteration02',CLUSTER_QUEUE,CLUSTER_QUEUE_LONG) CreateAtlasXMLAndCleanedDeformedAveragesNode = pe.Node(interface=Function(function=CreateAtlasXMLAndCleanedDeformedAverages, input_names=['t1_image', 'deformed_list', 'AtlasTemplate', 'outDefinition'], output_names=['outAtlasFullPath', 'clean_deformed_list']), # This is a lot of work, so submit it run_without_submitting=True, run_without_submitting=True, # HACK: THIS NODE REALLY SHOULD RUN ON THE CLUSTER! name='99_CreateAtlasXMLAndCleanedDeformedAverages') if subj_pipeline_options['plugin_name'].startswith('SGE'): # for some nodes, the qsub call needs to be modified on the cluster CreateAtlasXMLAndCleanedDeformedAveragesNode.plugin_args = {'template': subj_pipeline_options['plugin_args']['template'], 'qsub_args': modify_qsub_args(cluster['queue'], 1, 1, 1), 'overwrite': True} for bt in [buildTemplateIteration1, buildTemplateIteration2]: BeginANTS = bt.get_node("BeginANTS") BeginANTS.plugin_args = {'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, 'qsub_args': modify_qsub_args(cluster['queue'], 7, 4, 16)} wimtdeformed = bt.get_node("wimtdeformed") wimtdeformed.plugin_args = {'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, 'qsub_args': modify_qsub_args(cluster['queue'], 2, 2, 2)} #AvgAffineTransform = bt.get_node("AvgAffineTransform") #AvgAffineTransform.plugin_args = {'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, # 'qsub_args': modify_qsub_args(cluster['queue'], 2, 1, 1)} wimtPassivedeformed = bt.get_node("wimtPassivedeformed") wimtPassivedeformed.plugin_args = {'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, 'qsub_args': modify_qsub_args(cluster['queue'], 2, 2, 4)} # Running off previous baseline experiment NACCommonAtlas = MakeAtlasNode(experiment['atlascache'], 'NACCommonAtlas_{0}'.format('subject'), ['S_BRAINSABCSupport'] ) ## HACK : replace 'subject' with subject id once this is a loop rather than an iterable. template.connect([(myInitAvgWF, buildTemplateIteration1, [('output_average_image', 'inputspec.fixed_image')]), (MergeByExtendListElementsNode, buildTemplateIteration1, [('ListOfImagesDictionaries', 'inputspec.ListOfImagesDictionaries'), ('registrationImageTypes', 'inputspec.registrationImageTypes'), ('interpolationMapping','inputspec.interpolationMapping')]), (buildTemplateIteration1, buildTemplateIteration2, [('outputspec.template', 'inputspec.fixed_image')]), (MergeByExtendListElementsNode, buildTemplateIteration2, [('ListOfImagesDictionaries', 'inputspec.ListOfImagesDictionaries'), ('registrationImageTypes','inputspec.registrationImageTypes'), ('interpolationMapping', 'inputspec.interpolationMapping')]), (subjectNode, CreateAtlasXMLAndCleanedDeformedAveragesNode, [(('subject', xml_filename), 'outDefinition')]), (NACCommonAtlas, CreateAtlasXMLAndCleanedDeformedAveragesNode, [('ExtendedAtlasDefinition_xml_in', 'AtlasTemplate')]), (buildTemplateIteration2, CreateAtlasXMLAndCleanedDeformedAveragesNode, [('outputspec.template', 't1_image'), ('outputspec.passive_deformed_templates', 'deformed_list')]), ]) ## Genearate an average lmks file. myAverageLmk = pe.Node(interface = GenerateAverageLmkFile(), name="myAverageLmk" ) myAverageLmk.inputs.outputLandmarkFile = "AVG_LMKS.fcsv" template.connect(baselineRequiredDG,'BCD_ACPC_Landmarks_fcsv',myAverageLmk,'inputLandmarkFiles') # Create DataSinks SubjectAtlas_DataSink = pe.Node(nio.DataSink(), name="Subject_DS") SubjectAtlas_DataSink.overwrite = subj_pipeline_options['ds_overwrite'] SubjectAtlas_DataSink.inputs.base_directory = experiment['resultdir'] template.connect([(subjectNode, SubjectAtlas_DataSink, [('subject', 'container')]), (CreateAtlasXMLAndCleanedDeformedAveragesNode, SubjectAtlas_DataSink, [('outAtlasFullPath', 'Atlas.@definitions')]), (CreateAtlasXMLAndCleanedDeformedAveragesNode, SubjectAtlas_DataSink, [('clean_deformed_list', 'Atlas.@passive_deformed_templates')]), (subjectNode, SubjectAtlas_DataSink, [(('subject', outputPattern), 'regexp_substitutions')]), (buildTemplateIteration2, SubjectAtlas_DataSink, [('outputspec.template', 'Atlas.@template')]), (myAverageLmk,SubjectAtlas_DataSink,[('outputLandmarkFile','Atlas.@outputLandmarkFile')]), ]) dotfilename = argv['--dotfilename'] if dotfilename is not None: print("WARNING: Printing workflow, but not running pipeline") print_workflow(template, plugin=subj_pipeline_options['plugin_name'], dotfilename=dotfilename) else: run_workflow(template, plugin=subj_pipeline_options['plugin_name'], plugin_args=subj_pipeline_options['plugin_args'])
def createAndRun(sessions, environment, experiment, pipeline, cluster, useSentinal, dryRun): from baw_exp import OpenSubjectDatabase from utilities.misc import add_dict from workflows.utils import run_workflow master_config = {} for configDict in [environment, experiment, pipeline, cluster]: master_config = add_dict(master_config, configDict) database = OpenSubjectDatabase(experiment['cachedir'], ['all'], environment['prefix'], experiment['dbfile']) database.open_connection() try: all_sessions = database.getAllSessions() if not set(sessions) <= set(all_sessions) and 'all' not in sessions: missing = set(sessions) - set(all_sessions) assert len(missing) == 0, "Requested sessions are missing from the database: {0}\n\n{1}".format(missing,all_sessions) elif 'all' in sessions: sessions = set(all_sessions) else: sessions = set(sessions) print("!=" * 40) print("Doing sessions {0}".format(sessions)) print("!=" * 40) for session in sessions: _dict = {} subject = database.getSubjFromSession(session) _dict['session'] = session _dict['project'] = database.getProjFromSession(session) _dict['subject'] = subject _dict['T1s'] = database.getFilenamesByScantype(session, ['T1-15', 'T1-30']) _dict['T2s'] = database.getFilenamesByScantype(session, ['T2-15', 'T2-30']) _dict['PDs'] = database.getFilenamesByScantype(session, ['PD-15', 'PD-30']) _dict['FLs'] = database.getFilenamesByScantype(session, ['FL-15', 'FL-30']) _dict['OTs'] = database.getFilenamesByScantype(session, ['OTHER-15', 'OTHER-30']) sentinal_file_basedir = os.path.join( master_config['resultdir'], _dict['project'], _dict['subject'], _dict['session'] ) sentinal_file_list = list() sentinal_file_list.append(os.path.join(sentinal_file_basedir)) if 'denoise' in master_config['components']: # # NO SENTINAL FILE pass # # Use t1 average sentinal file if specified. if 'landmark' in master_config['components']: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "ACPCAlign", "landmarkInitializer_atlas_to_subject_transform.h5" )) if 'tissue_classify' in master_config['components']: for tc_file in ["complete_brainlabels_seg.nii.gz", "t1_average_BRAINSABC.nii.gz"]: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", tc_file )) if 'warp_atlas_to_subject' in master_config['components']: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "WarpedAtlas2Subject", "rho.nii.gz" )) sentinal_file_list.append(os.path.join( sentinal_file_basedir, "WarpedAtlas2Subject", "left_hemisphere_wm.nii.gz" )) if 'malf_2012_neuro' in master_config['components']: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_fs_standard_label.nii.gz" )) sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_label.nii.gz" )) sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_lobar_label.nii.gz" )) sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_CSFVBInjected_label.nii.gz" )) if 'malf_2015_wholebrain' in master_config['components']: pass if master_config['workflow_phase'] == 'atlas-based-reference': atlasDirectory = os.path.join(master_config['atlascache'], 'spatialImages', 'rho.nii.gz') else: atlasDirectory = os.path.join(master_config['previousresult'], subject, 'Atlas', 'AVG_rho.nii.gz') if os.path.exists(atlasDirectory): print("LOOKING FOR DIRECTORY {0}".format(atlasDirectory)) else: print("MISSING REQUIRED ATLAS INPUT {0}".format(atlasDirectory)) print("SKIPPING: {0} prerequisites missing".format(session)) continue ## Use different sentinal file if segmentation specified. from workflows.baseline import DetermineIfSegmentationShouldBeDone do_BRAINSCut_Segmentation = DetermineIfSegmentationShouldBeDone(master_config) if do_BRAINSCut_Segmentation: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "CleanedDenoisedRFSegmentations", "allLabels_seg.nii.gz" )) def allPathsExists(list_of_paths): is_missing = False for ff in list_of_paths: if not os.path.exists(ff): is_missing = True print("MISSING: {0}".format(ff)) return not is_missing if useSentinal and allPathsExists(sentinal_file_list): print("SKIPPING: {0} exists".format(sentinal_file_list)) else: print("PROCESSING INCOMPLETE: at least 1 required file does not exists") if dryRun == False: workflow = _create_singleSession(_dict, master_config, 'Linear', 'singleSession_{0}_{1}'.format(_dict['subject'], _dict['session'])) print("Starting session {0}".format(session)) # HACK Hard-coded to SGEGraph, but --wfrun is ignored completely run_workflow(workflow, plugin=master_config['plugin_name'], plugin_args=master_config['plugin_args']) else: print("EXITING WITHOUT WORK DUE TO dryRun flag") except: raise finally: try: database.close_connection() except: pass
def createAndRun(sessions, environment, experiment, pipeline, cluster, useSentinal, dryRun): from baw_exp import OpenSubjectDatabase from utilities.misc import add_dict from workflows.utils import run_workflow master_config = {} for configDict in [environment, experiment, pipeline, cluster]: master_config = add_dict(master_config, configDict) database = OpenSubjectDatabase(experiment['cachedir'], ['all'], environment['prefix'], experiment['dbfile']) database.open_connection() try: all_sessions = database.getAllSessions() if not set(sessions) <= set(all_sessions) and 'all' not in sessions: missing = set(sessions) - set(all_sessions) assert len( missing ) == 0, "Requested sessions are missing from the database: {0}\n\n{1}".format( missing, all_sessions) elif 'all' in sessions: sessions = set(all_sessions) else: sessions = set(sessions) print("!=" * 40) print("Doing sessions {0}".format(sessions)) print("!=" * 40) for session in sessions: _dict = {} subject = database.getSubjFromSession(session) _dict['session'] = session _dict['project'] = database.getProjFromSession(session) _dict['subject'] = subject _dict['T1s'] = database.getFilenamesByScantype( session, ['T1-15', 'T1-30']) _dict['T2s'] = database.getFilenamesByScantype( session, ['T2-15', 'T2-30']) _dict['PDs'] = database.getFilenamesByScantype( session, ['PD-15', 'PD-30']) _dict['FLs'] = database.getFilenamesByScantype( session, ['FL-15', 'FL-30']) _dict['OTs'] = database.getFilenamesByScantype( session, ['OTHER-15', 'OTHER-30']) sentinal_file_basedir = os.path.join(master_config['resultdir'], _dict['project'], _dict['subject'], _dict['session']) sentinal_file_list = list() sentinal_file_list.append(os.path.join(sentinal_file_basedir)) if 'denoise' in master_config['components']: # # NO SENTINAL FILE pass # # Use t1 average sentinal file if specified. if 'landmark' in master_config['components']: sentinal_file_list.append( os.path.join( sentinal_file_basedir, "ACPCAlign", "landmarkInitializer_atlas_to_subject_transform.h5")) if 'tissue_classify' in master_config['components']: for tc_file in [ "complete_brainlabels_seg.nii.gz", "t1_average_BRAINSABC.nii.gz" ]: sentinal_file_list.append( os.path.join(sentinal_file_basedir, "TissueClassify", tc_file)) if 'warp_atlas_to_subject' in master_config['components']: sentinal_file_list.append( os.path.join(sentinal_file_basedir, "WarpedAtlas2Subject", "rho.nii.gz")) sentinal_file_list.append( os.path.join(sentinal_file_basedir, "WarpedAtlas2Subject", "left_hemisphere_wm.nii.gz")) if 'malf_2012_neuro' in master_config['components']: sentinal_file_list.append( os.path.join( sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_fs_standard_label.nii.gz")) sentinal_file_list.append( os.path.join(sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_label.nii.gz")) sentinal_file_list.append( os.path.join(sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_lobar_label.nii.gz")) sentinal_file_list.append( os.path.join( sentinal_file_basedir, "TissueClassify", "MALF_HDAtlas20_2015_CSFVBInjected_label.nii.gz")) if 'malf_2015_wholebrain' in master_config['components']: pass if master_config['workflow_phase'] == 'atlas-based-reference': atlasDirectory = os.path.join(master_config['atlascache'], 'spatialImages', 'rho.nii.gz') else: atlasDirectory = os.path.join(master_config['previousresult'], subject, 'Atlas', 'AVG_rho.nii.gz') if os.path.exists(atlasDirectory): print("LOOKING FOR DIRECTORY {0}".format(atlasDirectory)) else: print( "MISSING REQUIRED ATLAS INPUT {0}".format(atlasDirectory)) print("SKIPPING: {0} prerequisites missing".format(session)) continue ## Use different sentinal file if segmentation specified. from workflows.baseline import DetermineIfSegmentationShouldBeDone do_BRAINSCut_Segmentation = DetermineIfSegmentationShouldBeDone( master_config) if do_BRAINSCut_Segmentation: sentinal_file_list.append( os.path.join(sentinal_file_basedir, "CleanedDenoisedRFSegmentations", "allLabels_seg.nii.gz")) def allPathsExists(list_of_paths): is_missing = False for ff in list_of_paths: if not os.path.exists(ff): is_missing = True print("MISSING: {0}".format(ff)) return not is_missing if useSentinal and allPathsExists(sentinal_file_list): print("SKIPPING: {0} exists".format(sentinal_file_list)) else: print( "PROCESSING INCOMPLETE: at least 1 required file does not exists" ) if dryRun == False: workflow = _create_singleSession( _dict, master_config, 'Linear', 'singleSession_{0}_{1}'.format(_dict['subject'], _dict['session'])) print("Starting session {0}".format(session)) # HACK Hard-coded to SGEGraph, but --wfrun is ignored completely run_workflow(workflow, plugin=master_config['plugin_name'], plugin_args=master_config['plugin_args']) else: print("EXITING WITHOUT WORK DUE TO dryRun flag") except: raise finally: try: database.close_connection() except: pass
def createAndRun(sessions, environment, experiment, pipeline, cluster, useSentinal, dryRun): from baw_exp import OpenSubjectDatabase from utilities.misc import add_dict from collections import OrderedDict import sys from workflows.utils import run_workflow master_config = {} for configDict in [environment, experiment, pipeline, cluster]: master_config = add_dict(master_config, configDict) database = OpenSubjectDatabase(experiment['cachedir'], ['all'], environment['prefix'], experiment['dbfile']) database.open_connection() try: all_sessions = database.getAllSessions() if not set(sessions) <= set(all_sessions) and 'all' not in sessions: missing = set(sessions) - set(all_sessions) assert len( missing ) == 0, "Requested sessions are missing from the database: {0}\n\n{1}".format( missing, all_sessions) elif 'all' in sessions: sessions = set(all_sessions) else: sessions = set(sessions) print("!=" * 40) print("Doing sessions {0}".format(sessions)) print("!=" * 40) for session in sessions: _dict = OrderedDict() t1_list = database.getFilenamesByScantype(session, ['T1-15', 'T1-30']) if len(t1_list) == 0: print( "ERROR: Skipping session {0} for subject {1} due to missing T1's" .format(session, subject)) print("REMOVE OR FIX BEFORE CONTINUING") continue subject = database.getSubjFromSession(session) _dict['session'] = session _dict['project'] = database.getProjFromSession(session) _dict['subject'] = subject _dict['T1s'] = t1_list _dict['T2s'] = database.getFilenamesByScantype( session, ['T2-15', 'T2-30']) _dict['BadT2'] = False if _dict['T2s'] == database.getFilenamesByScantype( session, ['T2-15']): print("This T2 is not going to be used for JointFusion") print("This T2 is not going to be used for JointFusion") print("This T2 is not going to be used for JointFusion") print("This T2 is not going to be used for JointFusion") print(_dict['T2s']) _dict['BadT2'] = True _dict['PDs'] = database.getFilenamesByScantype( session, ['PD-15', 'PD-30']) _dict['FLs'] = database.getFilenamesByScantype( session, ['FL-15', 'FL-30']) _dict['EMSP'] = database.getFilenamesByScantype(session, ['EMSP']) _dict['OTHERs'] = database.getFilenamesByScantype( session, ['OTHER-15', 'OTHER-30']) sentinal_file_basedir = os.path.join(master_config['resultdir'], _dict['project'], _dict['subject'], _dict['session']) sentinal_file_list = list() sentinal_file_list.append(os.path.join(sentinal_file_basedir)) if 'denoise' in master_config['components']: # # NO SENTINAL FILE pass # # Use t1 average sentinal file if specified. if 'landmark' in master_config['components']: sentinal_file_list.append( os.path.join( sentinal_file_basedir, "ACPCAlign", "landmarkInitializer_atlas_to_subject_transform.h5")) if 'tissue_classify' in master_config['components']: for tc_file in [ "complete_brainlabels_seg.nii.gz", "t1_average_BRAINSABC.nii.gz" ]: sentinal_file_list.append( os.path.join(sentinal_file_basedir, "TissueClassify", tc_file)) if 'warp_atlas_to_subject' in master_config['components']: warp_atlas_file_list = [ "hncma_atlas.nii.gz", "l_accumben_ProbabilityMap.nii.gz", "l_caudate_ProbabilityMap.nii.gz", "l_globus_ProbabilityMap.nii.gz", "l_hippocampus_ProbabilityMap.nii.gz", "l_putamen_ProbabilityMap.nii.gz", "l_thalamus_ProbabilityMap.nii.gz", "left_hemisphere_wm.nii.gz", "phi.nii.gz", "r_accumben_ProbabilityMap.nii.gz", "r_caudate_ProbabilityMap.nii.gz", "r_globus_ProbabilityMap.nii.gz", "r_hippocampus_ProbabilityMap.nii.gz", "r_putamen_ProbabilityMap.nii.gz", "r_thalamus_ProbabilityMap.nii.gz", "rho.nii.gz", "right_hemisphere_wm.nii.gz", "template_WMPM2_labels.nii.gz", "template_headregion.nii.gz", "template_leftHemisphere.nii.gz", "template_nac_labels.nii.gz", "template_rightHemisphere.nii.gz", "template_ventricles.nii.gz", "theta.nii.gz" ] for ff in warp_atlas_file_list: sentinal_file_list.append( os.path.join(sentinal_file_basedir, "WarpedAtlas2Subject", ff)) if 'jointfusion_2015_wholebrain' in master_config['components']: sentinal_file_list.append( os.path.join( sentinal_file_basedir, "TissueClassify", "JointFusion_HDAtlas20_2015_lobar_label.nii.gz")) sentinal_file_list.append( os.path.join(sentinal_file_basedir, "TissueClassify", "lobeVolumes_JSON.json")) if master_config['workflow_phase'] == 'atlas-based-reference': atlasDirectory = os.path.join(master_config['atlascache'], 'spatialImages', 'rho.nii.gz') sentinal_file_list.append(atlasDirectory) else: atlasDirectory = os.path.join(master_config['previousresult'], subject, 'Atlas', 'AVG_rho.nii.gz') sentinal_file_list.append(atlasDirectory) sentinal_file_list.append( os.path.join(master_config['previousresult'], subject, 'Atlas', 'AVG_template_headregion.nii.gz')) if os.path.exists(atlasDirectory): print("LOOKING FOR DIRECTORY {0}".format(atlasDirectory)) else: print( "MISSING REQUIRED ATLAS INPUT {0}".format(atlasDirectory)) print("SKIPPING: {0} prerequisites missing".format(session)) continue ## Use different sentinal file if segmentation specified. from workflows.baseline import DetermineIfSegmentationShouldBeDone do_BRAINSCut_Segmentation = DetermineIfSegmentationShouldBeDone( master_config) if do_BRAINSCut_Segmentation: sentinal_file_list.append( os.path.join(sentinal_file_basedir, "CleanedDenoisedRFSegmentations", "allLabels_seg.nii.gz")) def allPathsExists(list_of_paths): is_missing = False for ff in list_of_paths: if not os.path.exists(ff): is_missing = True print("MISSING: {0}".format(ff)) return not is_missing if useSentinal and allPathsExists(sentinal_file_list): print("SKIPPING: {0} exists".format(sentinal_file_list)) else: print( "PROCESSING INCOMPLETE: at least 1 required file does not exists" ) if dryRun == False: workflow = _create_singleSession( _dict, master_config, 'Linear', 'singleSession_{0}_{1}'.format(_dict['subject'], _dict['session'])) print("Starting session {0}".format(session)) # HACK Hard-coded to SGEGraph, but --wfrun is ignored completely run_workflow(workflow, plugin=master_config['plugin_name'], plugin_args=master_config['plugin_args']) else: print("EXITING WITHOUT WORK DUE TO dryRun flag") except: raise finally: try: database.close_connection() except: pass
def _template_runner(argv, environment, experiment, pipeline_options, cluster): print("Getting subjects from database...") # subjects = argv["--subjects"].split(',') subjects, subjects_sessions_dictionary = get_subjects_sessions_dictionary( argv['SUBJECTS'], experiment['cachedir'], experiment['resultdir'], environment['prefix'], experiment['dbfile'], argv['--use-sentinal'], argv['--use-shuffle']) # Build database before parallel section useSentinal = argv['--use-sentinal'] # Quick preliminary sanity check for thisSubject in subjects: if len(subjects_sessions_dictionary[thisSubject]) == 0: print( "ERROR: subject {0} has no sessions found. Did you supply a valid subject id on the command line?" .format(thisSubject)) sys.exit(-1) for thisSubject in subjects: print("Processing atlas generation for this subject: {0}".format( thisSubject)) print("=" * 80) print( "Copying Atlas directory and determining appropriate Nipype options..." ) subj_pipeline_options = nipype_options( argv, pipeline_options, cluster, experiment, environment) # Generate Nipype options print("Dispatching jobs to the system...") ###### ###### Now start workflow construction ###### # Set universal pipeline options nipype_config.update_config(subj_pipeline_options) ready_for_template_building = True for thisSession in subjects_sessions_dictionary[thisSubject]: path_test = os.path.join( experiment['previousresult'], '*/{0}/{1}/TissueClassify/t1_average_BRAINSABC.nii.gz'.format( thisSubject, thisSession)) t1_file_result = glob.glob(path_test) if len(t1_file_result) != 1: print( "Incorrect number of t1 images found for data grabber {0}". format(t1_file_result)) print(" at path {0}".format(path_test)) ready_for_template_building = False if not ready_for_template_building: print("TEMPORARY SKIPPING: Not ready to process {0}".format( thisSubject)) continue base_output_directory = os.path.join( subj_pipeline_options['logging']['log_directory'], thisSubject) template = pe.Workflow(name='SubjectAtlas_Template_' + thisSubject) template.base_dir = base_output_directory subjectNode = pe.Node(interface=IdentityInterface(fields=['subject']), run_without_submitting=True, name='99_subjectIterator') subjectNode.inputs.subject = thisSubject sessionsExtractorNode = pe.Node(Function( function=getSessionsFromSubjectDictionary, input_names=['subject_session_dictionary', 'subject'], output_names=['sessions']), run_without_submitting=True, name="99_sessionsExtractor") sessionsExtractorNode.inputs.subject_session_dictionary = subjects_sessions_dictionary baselineOptionalDG = pe.MapNode(nio.DataGrabber( infields=['subject', 'session'], outfields=['t2_average', 'pd_average', 'fl_average'], run_without_submitting=True), run_without_submitting=True, iterfield=['session'], name='BaselineOptional_DG') baselineOptionalDG.inputs.base_directory = experiment['previousresult'] baselineOptionalDG.inputs.sort_filelist = True baselineOptionalDG.inputs.raise_on_empty = False baselineOptionalDG.inputs.template = '*' baselineOptionalDG.inputs.field_template = { 't2_average': '*/%s/%s/TissueClassify/t2_average_BRAINSABC.nii.gz', 'pd_average': '*/%s/%s/TissueClassify/pd_average_BRAINSABC.nii.gz', 'fl_average': '*/%s/%s/TissueClassify/fl_average_BRAINSABC.nii.gz' } baselineOptionalDG.inputs.template_args = { 't2_average': [['subject', 'session']], 'pd_average': [['subject', 'session']], 'fl_average': [['subject', 'session']] } baselineRequiredDG = pe.MapNode(nio.DataGrabber( infields=['subject', 'session'], outfields=[ 't1_average', 'brainMaskLabels', 'posteriorImages', 'passive_intensities', 'passive_masks', 'BCD_ACPC_Landmarks_fcsv' ], run_without_submitting=True), run_without_submitting=True, iterfield=['session'], name='Baseline_DG') baselineRequiredDG.inputs.base_directory = experiment['previousresult'] baselineRequiredDG.inputs.sort_filelist = True baselineRequiredDG.inputs.raise_on_empty = True baselineRequiredDG.inputs.template = '*' posterior_files = [ 'AIR', 'BASAL', 'CRBLGM', 'CRBLWM', 'CSF', 'GLOBUS', 'HIPPOCAMPUS', 'NOTCSF', 'NOTGM', 'NOTVB', 'NOTWM', 'SURFGM', 'THALAMUS', 'VB', 'WM' ] passive_intensities_files = [ 'rho.nii.gz', 'phi.nii.gz', 'theta.nii.gz', 'l_thalamus_ProbabilityMap.nii.gz', 'r_accumben_ProbabilityMap.nii.gz', 'l_globus_ProbabilityMap.nii.gz', 'l_accumben_ProbabilityMap.nii.gz', 'l_caudate_ProbabilityMap.nii.gz', 'l_putamen_ProbabilityMap.nii.gz', 'r_thalamus_ProbabilityMap.nii.gz', 'r_putamen_ProbabilityMap.nii.gz', 'r_caudate_ProbabilityMap.nii.gz', 'r_hippocampus_ProbabilityMap.nii.gz', 'r_globus_ProbabilityMap.nii.gz', 'l_hippocampus_ProbabilityMap.nii.gz' ] passive_mask_files = [ 'template_WMPM2_labels.nii.gz', 'hncma_atlas.nii.gz', 'template_nac_labels.nii.gz', 'template_leftHemisphere.nii.gz', 'template_rightHemisphere.nii.gz', 'template_ventricles.nii.gz', 'template_headregion.nii.gz' ] baselineRequiredDG.inputs.field_template = { 't1_average': '*/%s/%s/TissueClassify/t1_average_BRAINSABC.nii.gz', 'brainMaskLabels': '*/%s/%s/TissueClassify/complete_brainlabels_seg.nii.gz', 'BCD_ACPC_Landmarks_fcsv': '*/%s/%s/ACPCAlign/BCD_ACPC_Landmarks.fcsv', 'posteriorImages': '*/%s/%s/TissueClassify/POSTERIOR_%s.nii.gz', 'passive_intensities': '*/%s/%s/WarpedAtlas2Subject/%s', 'passive_masks': '*/%s/%s/WarpedAtlas2Subject/%s', } baselineRequiredDG.inputs.template_args = { 't1_average': [['subject', 'session']], 'brainMaskLabels': [['subject', 'session']], 'BCD_ACPC_Landmarks_fcsv': [['subject', 'session']], 'posteriorImages': [['subject', 'session', posterior_files]], 'passive_intensities': [['subject', 'session', passive_intensities_files]], 'passive_masks': [['subject', 'session', passive_mask_files]] } MergeByExtendListElementsNode = pe.Node( Function(function=MergeByExtendListElements, input_names=[ 't1s', 't2s', 'pds', 'fls', 'labels', 'posteriors', 'passive_intensities', 'passive_masks' ], output_names=[ 'ListOfImagesDictionaries', 'registrationImageTypes', 'interpolationMapping' ]), run_without_submitting=True, name="99_MergeByExtendListElements") template.connect([ (subjectNode, baselineRequiredDG, [('subject', 'subject')]), (subjectNode, baselineOptionalDG, [('subject', 'subject')]), (subjectNode, sessionsExtractorNode, [('subject', 'subject')]), (sessionsExtractorNode, baselineRequiredDG, [('sessions', 'session')]), (sessionsExtractorNode, baselineOptionalDG, [('sessions', 'session')]), (baselineRequiredDG, MergeByExtendListElementsNode, [('t1_average', 't1s'), ('brainMaskLabels', 'labels'), (('posteriorImages', ConvertSessionsListOfPosteriorListToDictionaryOfSessionLists), 'posteriors')]), (baselineOptionalDG, MergeByExtendListElementsNode, [('t2_average', 't2s'), ('pd_average', 'pds'), ('fl_average', 'fls')]), (baselineRequiredDG, MergeByExtendListElementsNode, [(('passive_intensities', ConvertSessionsListOfPosteriorListToDictionaryOfSessionLists), 'passive_intensities')]), (baselineRequiredDG, MergeByExtendListElementsNode, [(('passive_masks', ConvertSessionsListOfPosteriorListToDictionaryOfSessionLists), 'passive_masks')]) ]) myInitAvgWF = pe.Node( interface=ants.AverageImages(), name='Atlas_antsSimpleAverage') # was 'Phase1_antsSimpleAverage' myInitAvgWF.inputs.dimension = 3 myInitAvgWF.inputs.normalize = True myInitAvgWF.inputs.num_threads = -1 template.connect(baselineRequiredDG, 't1_average', myInitAvgWF, "images") #################################################################################################### # TEMPLATE_BUILD_RUN_MODE = 'MULTI_IMAGE' # if numSessions == 1: # TEMPLATE_BUILD_RUN_MODE = 'SINGLE_IMAGE' #################################################################################################### CLUSTER_QUEUE = cluster['queue'] CLUSTER_QUEUE_LONG = cluster['long_q'] buildTemplateIteration1 = BAWantsRegistrationTemplateBuildSingleIterationWF( 'iteration01', CLUSTER_QUEUE, CLUSTER_QUEUE_LONG) # buildTemplateIteration2 = buildTemplateIteration1.clone(name='buildTemplateIteration2') buildTemplateIteration2 = BAWantsRegistrationTemplateBuildSingleIterationWF( 'Iteration02', CLUSTER_QUEUE, CLUSTER_QUEUE_LONG) CreateAtlasXMLAndCleanedDeformedAveragesNode = pe.Node( interface=Function( function=CreateAtlasXMLAndCleanedDeformedAverages, input_names=[ 't1_image', 'deformed_list', 'AtlasTemplate', 'outDefinition' ], output_names=['outAtlasFullPath', 'clean_deformed_list']), # This is a lot of work, so submit it run_without_submitting=True, run_without_submitting= True, # HACK: THIS NODE REALLY SHOULD RUN ON THE CLUSTER! name='99_CreateAtlasXMLAndCleanedDeformedAverages') if subj_pipeline_options['plugin_name'].startswith( 'SGE' ): # for some nodes, the qsub call needs to be modified on the cluster CreateAtlasXMLAndCleanedDeformedAveragesNode.plugin_args = { 'template': subj_pipeline_options['plugin_args']['template'], 'qsub_args': modify_qsub_args(cluster['queue'], 1, 1, 1), 'overwrite': True } for bt in [buildTemplateIteration1, buildTemplateIteration2]: BeginANTS = bt.get_node("BeginANTS") BeginANTS.plugin_args = { 'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, 'qsub_args': modify_qsub_args(cluster['queue'], 7, 4, 16) } wimtdeformed = bt.get_node("wimtdeformed") wimtdeformed.plugin_args = { 'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, 'qsub_args': modify_qsub_args(cluster['queue'], 2, 2, 2) } #AvgAffineTransform = bt.get_node("AvgAffineTransform") #AvgAffineTransform.plugin_args = {'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, # 'qsub_args': modify_qsub_args(cluster['queue'], 2, 1, 1)} wimtPassivedeformed = bt.get_node("wimtPassivedeformed") wimtPassivedeformed.plugin_args = { 'template': subj_pipeline_options['plugin_args']['template'], 'overwrite': True, 'qsub_args': modify_qsub_args(cluster['queue'], 2, 2, 4) } # Running off previous baseline experiment NACCommonAtlas = MakeAtlasNode( experiment['atlascache'], 'NACCommonAtlas_{0}'.format('subject'), ['S_BRAINSABCSupport'] ) ## HACK : replace 'subject' with subject id once this is a loop rather than an iterable. template.connect([ (myInitAvgWF, buildTemplateIteration1, [('output_average_image', 'inputspec.fixed_image')]), (MergeByExtendListElementsNode, buildTemplateIteration1, [('ListOfImagesDictionaries', 'inputspec.ListOfImagesDictionaries'), ('registrationImageTypes', 'inputspec.registrationImageTypes'), ('interpolationMapping', 'inputspec.interpolationMapping')]), (buildTemplateIteration1, buildTemplateIteration2, [('outputspec.template', 'inputspec.fixed_image')]), (MergeByExtendListElementsNode, buildTemplateIteration2, [('ListOfImagesDictionaries', 'inputspec.ListOfImagesDictionaries'), ('registrationImageTypes', 'inputspec.registrationImageTypes'), ('interpolationMapping', 'inputspec.interpolationMapping')]), (subjectNode, CreateAtlasXMLAndCleanedDeformedAveragesNode, [(('subject', xml_filename), 'outDefinition')]), (NACCommonAtlas, CreateAtlasXMLAndCleanedDeformedAveragesNode, [('ExtendedAtlasDefinition_xml_in', 'AtlasTemplate')]), (buildTemplateIteration2, CreateAtlasXMLAndCleanedDeformedAveragesNode, [ ('outputspec.template', 't1_image'), ('outputspec.passive_deformed_templates', 'deformed_list') ]), ]) ## Genearate an average lmks file. myAverageLmk = pe.Node(interface=GenerateAverageLmkFile(), name="myAverageLmk") myAverageLmk.inputs.outputLandmarkFile = "AVG_LMKS.fcsv" template.connect(baselineRequiredDG, 'BCD_ACPC_Landmarks_fcsv', myAverageLmk, 'inputLandmarkFiles') # Create DataSinks SubjectAtlas_DataSink = pe.Node(nio.DataSink(), name="Subject_DS") SubjectAtlas_DataSink.overwrite = subj_pipeline_options['ds_overwrite'] SubjectAtlas_DataSink.inputs.base_directory = experiment['resultdir'] template.connect([ (subjectNode, SubjectAtlas_DataSink, [('subject', 'container')]), (CreateAtlasXMLAndCleanedDeformedAveragesNode, SubjectAtlas_DataSink, [('outAtlasFullPath', 'Atlas.@definitions') ]), (CreateAtlasXMLAndCleanedDeformedAveragesNode, SubjectAtlas_DataSink, [('clean_deformed_list', 'Atlas.@passive_deformed_templates')]), (subjectNode, SubjectAtlas_DataSink, [(('subject', outputPattern), 'regexp_substitutions')]), (buildTemplateIteration2, SubjectAtlas_DataSink, [('outputspec.template', 'Atlas.@template')]), (myAverageLmk, SubjectAtlas_DataSink, [('outputLandmarkFile', 'Atlas.@outputLandmarkFile')]), ]) dotfilename = argv['--dotfilename'] if dotfilename is not None: print("WARNING: Printing workflow, but not running pipeline") print_workflow(template, plugin=subj_pipeline_options['plugin_name'], dotfilename=dotfilename) else: run_workflow(template, plugin=subj_pipeline_options['plugin_name'], plugin_args=subj_pipeline_options['plugin_args'])
def createAndRun(sessions, environment, experiment, pipeline, cluster, useSentinal, dryRun): from baw_exp import OpenSubjectDatabase from utilities.misc import add_dict from collections import OrderedDict import sys from workflows.utils import run_workflow master_config = {} for configDict in [environment, experiment, pipeline, cluster]: master_config = add_dict(master_config, configDict) database = OpenSubjectDatabase(experiment['cachedir'], ['all'], environment['prefix'], experiment['dbfile']) database.open_connection() try: all_sessions = database.getAllSessions() if not set(sessions) <= set(all_sessions) and 'all' not in sessions: missing = set(sessions) - set(all_sessions) assert len(missing) == 0, "Requested sessions are missing from the database: {0}\n\n{1}".format(missing, all_sessions) elif 'all' in sessions: sessions = set(all_sessions) else: sessions = set(sessions) print("!=" * 40) print("Doing sessions {0}".format(sessions)) print("!=" * 40) for session in sessions: _dict = OrderedDict() t1_list = database.getFilenamesByScantype(session, ['T1-15', 'T1-30']) if len(t1_list) == 0: print("ERROR: Skipping session {0} for subject {1} due to missing T1's".format(session, subject)) print("REMOVE OR FIX BEFORE CONTINUING") continue subject = database.getSubjFromSession(session) _dict['session'] = session _dict['project'] = database.getProjFromSession(session) _dict['subject'] = subject _dict['T1s'] = t1_list _dict['T2s'] = database.getFilenamesByScantype(session, ['T2-15', 'T2-30']) _dict['BadT2'] = False if _dict['T2s'] == database.getFilenamesByScantype(session, ['T2-15']): print("This T2 is not going to be used for JointFusion") print("This T2 is not going to be used for JointFusion") print("This T2 is not going to be used for JointFusion") print("This T2 is not going to be used for JointFusion") print(_dict['T2s']) _dict['BadT2'] = True _dict['PDs'] = database.getFilenamesByScantype(session, ['PD-15', 'PD-30']) _dict['FLs'] = database.getFilenamesByScantype(session, ['FL-15', 'FL-30']) _dict['EMSP'] = database.getFilenamesByScantype(session, ['EMSP']) _dict['OTHERs'] = database.getFilenamesByScantype(session, ['OTHER-15', 'OTHER-30']) sentinal_file_basedir = os.path.join( master_config['resultdir'], _dict['project'], _dict['subject'], _dict['session'] ) sentinal_file_list = list() sentinal_file_list.append(os.path.join(sentinal_file_basedir)) if 'denoise' in master_config['components']: # # NO SENTINAL FILE pass # # Use t1 average sentinal file if specified. if 'landmark' in master_config['components']: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "ACPCAlign", "landmarkInitializer_atlas_to_subject_transform.h5" )) if 'tissue_classify' in master_config['components']: for tc_file in ["complete_brainlabels_seg.nii.gz", "t1_average_BRAINSABC.nii.gz"]: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", tc_file )) if 'warp_atlas_to_subject' in master_config['components']: warp_atlas_file_list = [ "hncma_atlas.nii.gz", "l_accumben_ProbabilityMap.nii.gz", "l_caudate_ProbabilityMap.nii.gz", "l_globus_ProbabilityMap.nii.gz", "l_hippocampus_ProbabilityMap.nii.gz", "l_putamen_ProbabilityMap.nii.gz", "l_thalamus_ProbabilityMap.nii.gz", "left_hemisphere_wm.nii.gz", "phi.nii.gz", "r_accumben_ProbabilityMap.nii.gz", "r_caudate_ProbabilityMap.nii.gz", "r_globus_ProbabilityMap.nii.gz", "r_hippocampus_ProbabilityMap.nii.gz", "r_putamen_ProbabilityMap.nii.gz", "r_thalamus_ProbabilityMap.nii.gz", "rho.nii.gz", "right_hemisphere_wm.nii.gz", "template_WMPM2_labels.nii.gz", "template_headregion.nii.gz", "template_leftHemisphere.nii.gz", "template_nac_labels.nii.gz", "template_rightHemisphere.nii.gz", "template_ventricles.nii.gz", "theta.nii.gz" ] for ff in warp_atlas_file_list: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "WarpedAtlas2Subject", ff )) if 'jointfusion_2015_wholebrain' in master_config['components']: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", "JointFusion_HDAtlas20_2015_lobar_label.nii.gz" )) sentinal_file_list.append(os.path.join( sentinal_file_basedir, "TissueClassify", "lobeVolumes_JSON.json" )) if master_config['workflow_phase'] == 'atlas-based-reference': atlasDirectory = os.path.join(master_config['atlascache'], 'spatialImages', 'rho.nii.gz') sentinal_file_list.append(atlasDirectory) else: atlasDirectory = os.path.join(master_config['previousresult'], subject, 'Atlas', 'AVG_rho.nii.gz') sentinal_file_list.append(atlasDirectory) sentinal_file_list.append( os.path.join(master_config['previousresult'], subject, 'Atlas', 'AVG_template_headregion.nii.gz')) if os.path.exists(atlasDirectory): print("LOOKING FOR DIRECTORY {0}".format(atlasDirectory)) else: print("MISSING REQUIRED ATLAS INPUT {0}".format(atlasDirectory)) print("SKIPPING: {0} prerequisites missing".format(session)) continue ## Use different sentinal file if segmentation specified. from workflows.baseline import DetermineIfSegmentationShouldBeDone do_BRAINSCut_Segmentation = DetermineIfSegmentationShouldBeDone(master_config) if do_BRAINSCut_Segmentation: sentinal_file_list.append(os.path.join( sentinal_file_basedir, "CleanedDenoisedRFSegmentations", "allLabels_seg.nii.gz" )) def allPathsExists(list_of_paths): is_missing = False for ff in list_of_paths: if not os.path.exists(ff): is_missing = True print("MISSING: {0}".format(ff)) return not is_missing if useSentinal and allPathsExists(sentinal_file_list): print("SKIPPING: {0} exists".format(sentinal_file_list)) else: print("PROCESSING INCOMPLETE: at least 1 required file does not exists") if dryRun == False: workflow = _create_singleSession(_dict, master_config, 'Linear', 'singleSession_{0}_{1}'.format(_dict['subject'], _dict['session'])) print("Starting session {0}".format(session)) # HACK Hard-coded to SGEGraph, but --wfrun is ignored completely run_workflow(workflow, plugin=master_config['plugin_name'], plugin_args=master_config['plugin_args']) else: print("EXITING WITHOUT WORK DUE TO dryRun flag") except: raise finally: try: database.close_connection() except: pass