Пример #1
0
def radolan_to_xarray(data, attrs):
    """Converts RADOLAN data to xarray Dataset

    Parameters
    ----------
    data : :func:`numpy:numpy.array`
        array of shape (number of rows, number of columns)
    attrs : dict
        dictionary of metadata information from the file header

    Returns
    -------
    dset : xarray.Dataset
        RADOLAN data and coordinates
    """
    product = attrs["producttype"]
    pattrs = _get_radolan_product_attributes(attrs)
    radolan_grid_xy = rect.get_radolan_grid(attrs["nrow"], attrs["ncol"])
    x0 = radolan_grid_xy[0, :, 0]
    y0 = radolan_grid_xy[:, 0, 1]
    if pattrs:
        if "nodatamask" in attrs:
            data.flat[attrs["nodatamask"]] = pattrs["_FillValue"]
        if "cluttermask" in attrs:
            data.flat[attrs["cluttermask"]] = pattrs["_FillValue"]
    darr = xr.DataArray(
        data,
        attrs=pattrs,
        dims=["y", "x"],
        coords={"time": attrs["datetime"], "x": x0, "y": y0},
    )
    dset = xr.Dataset({product: darr})
    dset = dset.pipe(xr.decode_cf)

    return dset
Пример #2
0
def radolan_to_xarray(data, attrs):
    """Converts RADOLAN data to xarray Dataset

    Parameters
    ----------
    data : :func:`numpy:numpy.array`
        array of shape (number of rows, number of columns)
    attrs : dict
        dictionary of metadata information from the file header

    Returns
    -------
    dset : xarray.Dataset
        RADOLAN data and coordinates
    """
    product = attrs['producttype']
    pattrs = _get_radolan_product_attributes(attrs)
    radolan_grid_xy = rect.get_radolan_grid(attrs['nrow'], attrs['ncol'])
    x0 = radolan_grid_xy[0, :, 0]
    y0 = radolan_grid_xy[:, 0, 1]
    if pattrs:
        if 'nodatamask' in attrs:
            data.flat[attrs['nodatamask']] = pattrs['_FillValue']
        if 'cluttermask' in attrs:
            data.flat[attrs['cluttermask']] = pattrs['_FillValue']
    darr = xr.DataArray(
        data,
        attrs=pattrs,
        dims=['y', 'x'],
        coords={
            'time': attrs['datetime'],
            'x': x0,
            'y': y0,
        },
    )
    dset = xr.Dataset({product: darr})
    dset = dset.pipe(xr.decode_cf)

    return dset