Пример #1
0
def restore_list_serial_workflow_nosumwt(model_imagelist,
                                         psf_imagelist,
                                         residual_imagelist=None,
                                         **kwargs):
    """ Create a graph to calculate the restored image

    :param model_imagelist: Model list
    :param psf_imagelist: PSF list (without the sumwt term)
    :param residual_imagelist: Residual list (without the sumwt term)
    :param kwargs: Parameters for functions in components
    :return:
    """

    if residual_imagelist is None:
        residual_imagelist = []

    if len(residual_imagelist) > 0:
        return [
            restore_cube(model_imagelist[i], psf_imagelist[i],
                         residual_imagelist[i], **kwargs)
            for i, _ in enumerate(model_imagelist)
        ]
    else:
        return [
            restore_cube(model_imagelist[i], psf_imagelist[i], **kwargs)
            for i, _ in enumerate(model_imagelist)
        ]
def restore_list_serial_workflow(model_imagelist, psf_imagelist,
                                 residual_imagelist, **kwargs):
    """ Create a graph to calculate the restored image

    :param model_imagelist: Model list
    :param psf_imagelist: PSF list
    :param residual_imagelist: Residual list
    :param kwargs: Parameters for functions in components
    :return:
    """
    return [
        restore_cube(model_imagelist[i], psf_imagelist[i][0],
                     residual_imagelist[i][0], **kwargs)
        for i, _ in enumerate(model_imagelist)
    ]
    def load_invert_and_deconvolve(c):

        v1 = create_visibility_from_ms(input_vis[0], channum=[c])[0]
        v2 = create_visibility_from_ms(input_vis[1], channum=[c])[0]
        vf = append_visibility(v1, v2)
        vf = convert_visibility_to_stokes(vf)
        vf.configuration.diameter[...] = 35.0
        rows = vis_select_uvrange(vf, 0.0, uvmax=uvmax)
        v = create_visibility_from_rows(vf, rows)

        pol_frame = PolarisationFrame("stokesIQUV")

        m = create_image_from_visibility(v,
                                         npixel=npixel,
                                         cellsize=cellsize,
                                         polarisation_frame=pol_frame)

        if context == '2d':
            d, sumwt = invert_2d(v, m, dopsf=False)
            p, sumwt = invert_2d(v, m, dopsf=True)
        else:
            d, sumwt = invert_list_serial_workflow([v], [m],
                                                   context=context,
                                                   dopsf=False,
                                                   vis_slices=vis_slices)[0]
            p, sumwt = invert_list_serial_workflow([v], [m],
                                                   context=context,
                                                   dopsf=True,
                                                   vis_slices=vis_slices)[0]
        c, resid = deconvolve_cube(d,
                                   p,
                                   m,
                                   threshold=0.01,
                                   fracthresh=0.01,
                                   window_shape='quarter',
                                   niter=100,
                                   gain=0.1,
                                   algorithm='hogbom-complex')
        r = restore_cube(c, p, resid, psfwidth=psfwidth)
        return r
     vt = convert_blockvisibility_to_visibility(bvt)
     vt = convert_visibility_to_stokes(vt)
     
     cellsize = 20.0 * numpy.pi / (180.0 * 3600.0)
     npixel = 512
     
     model = create_image_from_visibility(vt, cellsize=cellsize, npixel=npixel,
                                          polarisation_frame=PolarisationFrame('stokesIQUV'))
     dirty, sumwt = invert_list_serial_workflow([vt], [model], context='2d')[0]
     psf, sumwt = invert_list_serial_workflow([vt], [model], context='2d', dopsf=True)[0]
     export_image_to_fits(dirty, '%s/compare_imaging_sim2_dirty.fits' % (results_dir))
     export_image_to_fits(psf, '%s/compare_imaging_sim2_psf.fits' % (results_dir))
     
     # Deconvolve using clean
     comp, residual = deconvolve_cube(dirty, psf, niter=10000, threshold=0.001, fractional_threshold=0.001,
                                      window_shape='quarter', gain=0.7, scales=[0, 3, 10, 30])
     
     restored = restore_cube(comp, psf, residual)
     export_image_to_fits(restored, '%s/compare_imaging_sim2_restored.fits' % (results_dir))
     export_image_to_fits(residual, '%s/compare_imaging_sim2_residual.fits' % (results_dir))
     
     qa = qa_image(restored)
     
     assert numpy.abs(qa.data['max'] - 1.006140596404203) < 1e-7, qa
     assert numpy.abs(qa.data['maxabs'] - 1.006140596404203) < 1e-7, qa
     assert numpy.abs(qa.data['min'] + 0.23890808520954754) < 1e-7, qa
     assert numpy.abs(qa.data['rms'] - 0.007366519782047875) < 1e-7, qa
     assert numpy.abs(qa.data['medianabs'] - 0.0005590537883509844) < 1e-7, qa
 except ModuleNotFoundError as error:
     print(error.__class__.__name__ + ": " + error.msg)
     pass