def set_position(self, value, date=None): if date is None: yesterday = last_onday(self.today) datekey = yesterday.strftime("%Y%m%d") else: datekey = date.replace("/", "").replace("-", "") self.position_cache[datekey] = value
def set_t1(self, value, date=None): """ 设定 T-1 的基金净值,有时我们只想计算实时净值,这就不需要重复计算 t1,可以先行设定 :param value: :param date: :return: """ if date is None: yesterday = last_onday(self.today) datekey = yesterday.strftime("%Y%m%d") else: datekey = date.replace("/", "").replace("-", "") if datekey in self.t1value_cache: print("t-1 value already exists, rewriting...") self.t1value_cache[datekey] = value self.t1_type = "已计算"
def get_t1(self, date=None, return_date=True): """ 预测 date 日的净值,基于 date-1 日的净值和 date 日的外盘数据,数据自动缓存,不会重复计算 :param date: str. %Y-%m-%d. 注意若是 date 日为昨天,即今日预测昨日的净值,date 取默认值 None。 :param return_date: bool, default True. return tuple, the second one is date in the format %Y%m%d :return: float, (str). :raises NonAccurate: 由于外盘数据还未及时更新,而 raise,可在调用程序中用 except 捕获再处理。 """ if date is None: yesterday = last_onday(self.today) datekey = yesterday.strftime("%Y%m%d") else: datekey = date.replace("/", "").replace("-", "") if datekey not in self.t1value_cache: if self.positions: current_pos = self.get_position(datekey, return_date=False) hdict = scale_dict(self.t1dict.copy(), aim=current_pos * 100) else: hdict = self.t1dict.copy() if date is None: # 此时预测上个交易日净值 yesterday_str = datekey last_value, last_date = self.get_t2() last_date_obj = dt.datetime.strptime(last_date, "%Y-%m-%d") cday = last_onday(last_onday(self.today)) while last_date_obj < cday: # 前天净值数据还没更新 # 是否存在部分 QDII 在 A 股交易日,美股休市日不更新净值的情形? if (cday.strftime("%Y-%m-%d") not in gap_info[self.fcode]) and is_on( cday, "US", no_trading_days): # 这里检查比较宽松,只要当天美股休市,就可以认为确实基金数据不存在而非未更新 self.t1_type = "前日未出" raise DateMismatch( self.code, reason= "%s netvalue has not been updated to the day before yesterday" % self.code, ) else: cday = last_onday(cday) # 经过这个没报错,就表示数据源是最新的 if last_date_obj >= last_onday(self.today): # 昨天数据已出,不需要再预测了 print( "no need to predict t-1 value since it has been out for %s" % self.code) self.t1_type = "昨日已出" self.t1value_cache = { last_date.replace("-", ""): last_value } if not return_date: return last_value else: return last_value, last_date else: yesterday_str = datekey fund_price = xu.get_daily(self.fcode) # 获取国内基金净值 fund_last = fund_price[fund_price["date"] < date].iloc[-1] # 注意实时更新应用 date=None 传入,否则此处无法保证此数据是前天的而不是大前天的,因为没做校验 # 事实上这里计算的预测是针对 date 之前的最晚数据和之前一日的预测 last_value = fund_last["close"] last_date = fund_last["date"].strftime("%Y-%m-%d") self.t1_delta = (1 + evaluate_fluctuation( hdict, yesterday_str, lastday=last_date, _check=True) / 100) net = last_value * self.t1_delta self.t1value_cache[datekey] = net self.t1_type = "已计算" if not return_date: return self.t1value_cache[datekey] else: return ( self.t1value_cache[datekey], datekey[:4] + "-" + datekey[4:6] + "-" + datekey[6:8], )