Пример #1
0
    def backtest(self):
        """
        run the whole backtest

        :return:
        """
        self.prepare()
        dates = pd.bdate_range(self.start, self.end)
        for d in dates:  # 考虑到暂时只支持基金,只在国内交易日运行
            if d not in opendate_set:
                d = next_onday(d)
            self.run(d)
Пример #2
0
    def get_position(self, date=None, refresh=False, return_date=True, **kws):
        """
        基于 date 日之前的净值数据,对 date 预估需要的仓位进行计算。

        :param date: str. %Y-%m-%d
        :param refresh: bool, default False. 若为 True,则刷新缓存,重新计算仓位。
        :param return_date: bool, default True. return tuple, the second one is date in the format %Y%m%d
        :param kws: 一些预估仓位可能的超参。包括 window,预估所需的时间窗口,decay 加权平均的权重衰减,smooth 每日仓位处理的平滑函数。以上参数均可保持默认即可获得较好效果。
        :return: float. 0-100. 100 代表满仓。
        """
        if not date:
            date = last_onday(self.today).strftime("%Y%m%d")
        else:
            date = date.replace("/", "").replace("-", "")
        if date not in self.position_cache or refresh:

            fdict = scale_dict(self.t1dict.copy(), aim=100)
            l = kws.get("window", 4)
            q = kws.get("decay", 0.8)
            s = kws.get("smooth", _smooth_pos)
            d = dt.datetime.strptime(date, "%Y%m%d")
            posl = [sum([v for _, v in self.t1dict.items()]) / 100]
            for _ in range(l):
                d = last_onday(d)
            for _ in range(l - 1):
                d = next_onday(d)
                pred = evaluate_fluctuation(
                    fdict,
                    d.strftime("%Y-%m-%d"),
                    lastday=last_onday(d).strftime("%Y-%m-%d"),
                )
                real = evaluate_fluctuation(
                    {self.fcode: 100},
                    d.strftime("%Y-%m-%d"),
                    lastday=last_onday(d).strftime("%Y-%m-%d"),
                )
                posl.append(s(real, pred, posl[-1]))
            current_pos = sum([q**i * posl[l - i - 1] for i in range(l)
                               ]) / sum([q**i for i in range(l)])
            self.position_cache[date] = current_pos
        if not return_date:
            return self.position_cache[date]
        else:
            return (
                self.position_cache[date],
                date[:4] + "-" + date[4:6] + "-" + date[6:8],
            )