Пример #1
0
def test_linregress_ufunc():
    y = np.random.random(20)
    x = np.arange(len(y))
    fit = np.array(stats.linregress(x, y))
    assert np.allclose(fit, _linregress_ufunc(x, y))
    # test with nans
    y[0] = np.nan
    fit = np.array(stats.linregress(x[1:], y[1:]))
    assert np.isnan(_linregress_ufunc(x, y)).all()
    assert np.allclose(fit, _linregress_ufunc(x, y, nanmask=True))
    # test with all nansum
    y[:] = np.nan
    assert np.isnan(_linregress_ufunc(x, y, nanmask=True)).all()
Пример #2
0
def test_xr_linregress(chunks, variant, dtype, nans):
    a = xr.DataArray(np.random.rand(3, 13, 5), dims=["x", "time", "y"])
    b = xr.DataArray(np.random.rand(3, 5, 13), dims=["x", "y", "time"])
    if nans:
        # add nans at random positions
        a.data[np.unravel_index(np.random.randint(0, 2 * 4 * 12, 10),
                                a.shape)] = np.nan
        b.data[np.unravel_index(np.random.randint(0, 2 * 4 * 12, 10),
                                b.shape)] = np.nan

    if chunks is not None:
        if variant == 0:
            a = a.chunk(chunks)
        elif variant == 1:
            b = b.chunk(chunks)
        elif variant == 2:
            a = a.chunk(chunks)
            b = b.chunk(chunks)

    reg = xr_linregress(a, b, dtype=dtype)
    for xx in range(len(a.x)):
        for yy in range(len(a.y)):
            pos = dict(x=xx, y=yy)
            expected = _linregress_ufunc(a.isel(**pos), b.isel(**pos))
            reg_sub = reg.isel(**pos)
            for ni, nn in enumerate(
                ["slope", "intercept", "r_value", "p_value", "std_err"]):
                np.testing.assert_allclose(reg_sub[nn].data, expected[ni])
Пример #3
0
def test_lin_trend_full_legacy():
    # This is meant to be a test if the old ufunc for the trend produces
    # identical output
    y = np.random.random(20)
    x = np.arange(len(y))
    fit = _linregress_ufunc(x, y)[0:2]
    fit_legacy = _lin_trend_legacy(y)
    assert np.allclose(fit, fit_legacy)
Пример #4
0
def test_linregress_ufunc():
    y = np.random.random(20)
    x = np.arange(len(y))
    fit = np.array(stats.linregress(x, y))
    assert np.allclose(fit, _linregress_ufunc(x, y))