def _mosflm_parallel_integrate(self): '''Perform the integration as before, but this time as a number of parallel Mosflm jobs (hence, in separate directories) and including a step of pre-refinement of the mosaic spread and missets. This will all be kind of explicit and hence probably messy!''' refinr = self.get_integrater_refiner() lattice = refinr.get_refiner_lattice() spacegroup_number = lattice_to_spacegroup(lattice) mosaic = refinr.get_refiner_payload('mosaic') beam = refinr.get_refiner_payload('beam') distance = refinr.get_refiner_payload('distance') matrix = refinr.get_refiner_payload('mosflm_orientation_matrix') integration_params = refinr.get_refiner_payload( 'mosflm_integration_parameters') if integration_params: if 'separation' in integration_params: self.set_integrater_parameter( 'mosflm', 'separation', '%s %s' % tuple(integration_params['separation'])) if 'raster' in integration_params: self.set_integrater_parameter( 'mosflm', 'raster', '%d %d %d %d %d' % tuple(integration_params['raster'])) refinr.set_refiner_payload('mosflm_integration_parameters', None) pname, xname, dname = self.get_integrater_project_info() # what follows below should (i) be run in separate directories # and (ii) be repeated N=parallel times. nproc = PhilIndex.params.xia2.settings.multiprocessing.nproc parallel = nproc # FIXME this is something of a kludge - if too few frames refinement # and integration does not work well... ideally want at least 15 # frames / chunk (say) nframes = self._intgr_wedge[1] - self._intgr_wedge[0] + 1 if parallel > nframes / 15: parallel = nframes // 15 if not parallel: raise RuntimeError('parallel not set') if parallel < 2: raise RuntimeError('parallel not parallel: %s' % parallel) jobs = [] hklouts = [] nref = 0 # calculate the chunks to use offset = self.get_frame_offset() start = self._intgr_wedge[0] - offset end = self._intgr_wedge[1] - offset left_images = 1 + end - start left_chunks = parallel chunks = [] while left_images > 0: size = left_images // left_chunks chunks.append((start, start + size - 1)) start += size left_images -= size left_chunks -= 1 summary_files = [] for j in range(parallel): # make some working directories, as necessary - chunk-(0:N-1) wd = os.path.join(self.get_working_directory(), 'chunk-%d' % j) if not os.path.exists(wd): os.makedirs(wd) job = MosflmIntegrate() job.set_working_directory(wd) auto_logfiler(job) l = refinr.get_refiner_lattice() # create the starting point f = open(os.path.join(wd, 'xiaintegrate-%s.mat' % l), 'w') for m in matrix: f.write(m) f.close() spacegroup_number = lattice_to_spacegroup(lattice) job.set_refine_profiles(self._mosflm_refine_profiles) # N.B. for harvesting need to append N to dname. if pname is not None and xname is not None and dname is not None: Debug.write('Harvesting: %s/%s/%s' % (pname, xname, dname)) harvest_dir = self.get_working_directory() temp_dname = '%s_%s' % \ (dname, self.get_integrater_sweep_name()) job.set_pname_xname_dname(pname, xname, temp_dname) job.set_template(os.path.basename(self.get_template())) job.set_directory(self.get_directory()) # check for ice - and if so, exclude (ranges taken from # XDS documentation) if self.get_integrater_ice() != 0: Debug.write('Excluding ice rings') job.set_exclude_ice(True) # exclude specified resolution ranges if len(self.get_integrater_excluded_regions()) != 0: regions = self.get_integrater_excluded_regions() Debug.write('Excluding regions: %s' % repr(regions)) job.set_exclude_regions(regions) mask = standard_mask(self.get_detector()) for m in mask: job.add_instruction(m) job.set_input_mat_file('xiaintegrate-%s.mat' % l) job.set_beam_centre(beam) job.set_distance(distance) job.set_space_group_number(spacegroup_number) job.set_mosaic(mosaic) if self.get_wavelength_prov() == 'user': job.set_wavelength(self.get_wavelength()) parameters = self.get_integrater_parameters('mosflm') job.update_parameters(parameters) if self._mosflm_gain: job.set_gain(self._mosflm_gain) # check for resolution limits if self._intgr_reso_high > 0.0: job.set_d_min(self._intgr_reso_high) if self._intgr_reso_low: job.set_d_max(self._intgr_reso_low) if PhilIndex.params.general.backstop_mask: from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.general.backstop_mask) mask = mask.calculate_mask_mosflm(self.get_header()) job.set_mask(mask) detector = self.get_detector() detector_width, detector_height = detector[0].get_image_size_mm() lim_x = 0.5 * detector_width lim_y = 0.5 * detector_height Debug.write('Scanner limits: %.1f %.1f' % (lim_x, lim_y)) job.set_limits(lim_x, lim_y) job.set_fix_mosaic(self._mosflm_postref_fix_mosaic) job.set_pre_refinement(True) job.set_image_range(chunks[j]) # these are now running so ... jobs.append(job) continue # ok, at this stage I need to ... # # (i) accumulate the statistics as a function of batch # (ii) mong them into a single block # # This is likely to be a pain in the arse! first_integrated_batch = 1.0e6 last_integrated_batch = -1.0e6 all_residuals = [] threads = [] for j in range(parallel): job = jobs[j] # now wait for them to finish - first wait will really be the # first one, then all should be finished... thread = Background(job, 'run') thread.start() threads.append(thread) mosaics = [] postref_result = {} integrated_images_first = 1.0e6 integrated_images_last = -1.0e6 self._intgr_per_image_statistics = {} for j in range(parallel): thread = threads[j] thread.stop() job = jobs[j] # get the log file output = job.get_all_output() # record a copy of it, perhaps - though not if parallel if self.get_integrater_sweep_name() and False: pname, xname, dname = self.get_integrater_project_info() FileHandler.record_log_file( '%s %s %s %s mosflm integrate' % \ (self.get_integrater_sweep_name(), pname, xname, '%s_%d' % (dname, j)), job.get_log_file()) # look for things that we want to know... # that is, the output reflection file name, the updated # value for the gain (if present,) any warnings, errors, # or just interesting facts. batches = job.get_batches_out() integrated_images_first = min(batches[0], integrated_images_first) integrated_images_last = max(batches[1], integrated_images_last) mosaics.extend(job.get_mosaic_spreads()) if min(mosaics) < 0: raise IntegrationError('negative mosaic spread: %s' % min(mosaic)) if (job.get_detector_gain_error() and not (self.get_imageset().get_detector()[0].get_type() == 'SENSOR_PAD')): gain = job.get_suggested_gain() if gain is not None: self.set_integrater_parameter('mosflm', 'gain', gain) self.set_integrater_export_parameter( 'mosflm', 'gain', gain) if self._mosflm_gain: Debug.write('GAIN updated to %f' % gain) else: Debug.write('GAIN found to be %f' % gain) self._mosflm_gain = gain self._mosflm_rerun_integration = True hklout = job.get_hklout() Debug.write('Integration output: %s' % hklout) hklouts.append(hklout) nref += job.get_nref() # if a BGSIG error happened try not refining the # profile and running again... if job.get_bgsig_too_large(): if not self._mosflm_refine_profiles: raise RuntimeError('BGSIG error with profiles fixed') Debug.write('BGSIG error detected - try fixing profile...') self._mosflm_refine_profiles = False self.set_integrater_done(False) return if job.get_getprof_error(): Debug.write('GETPROF error detected - try fixing profile...') self._mosflm_refine_profiles = False self.set_integrater_done(False) return # here # write the report for each image as .*-#$ to Chatter - # detailed report will be written automagically to science... self._intgr_per_image_statistics.update( job.get_per_image_statistics()) postref_result.update(job.get_postref_result()) # inspect the output for e.g. very high weighted residuals all_residuals.extend(job.get_residuals()) self._intgr_batches_out = (integrated_images_first, integrated_images_last) if mosaics and len(mosaics) > 0: self.set_integrater_mosaic_min_mean_max( min(mosaics), sum(mosaics) / len(mosaics), max(mosaics)) else: m = indxr.get_indexer_mosaic() self.set_integrater_mosaic_min_mean_max(m, m, m) Chatter.write(self.show_per_image_statistics()) Chatter.write('Mosaic spread: %.3f < %.3f < %.3f' % \ self.get_integrater_mosaic_min_mean_max()) # gather the statistics from the postrefinement for all sweeps # now write this to a postrefinement log postref_log = os.path.join(self.get_working_directory(), 'postrefinement.log') fout = open(postref_log, 'w') fout.write('$TABLE: Postrefinement for %s:\n' % \ self._intgr_sweep_name) fout.write('$GRAPHS: Missetting angles:A:1, 2, 3, 4: $$\n') fout.write('Batch PhiX PhiY PhiZ $$ Batch PhiX PhiY PhiZ $$\n') for image in sorted(postref_result): phix = postref_result[image].get('phix', 0.0) phiy = postref_result[image].get('phiy', 0.0) phiz = postref_result[image].get('phiz', 0.0) fout.write('%d %5.2f %5.2f %5.2f\n' % \ (image, phix, phiy, phiz)) fout.write('$$\n') fout.close() if self.get_integrater_sweep_name(): pname, xname, dname = self.get_integrater_project_info() FileHandler.record_log_file('%s %s %s %s postrefinement' % \ (self.get_integrater_sweep_name(), pname, xname, dname), postref_log) hklouts.sort() hklout = os.path.join(self.get_working_directory(), os.path.split(hklouts[0])[-1]) Debug.write('Sorting data to %s' % hklout) for hklin in hklouts: Debug.write('<= %s' % hklin) sortmtz = Sortmtz() sortmtz.set_hklout(hklout) for hklin in hklouts: sortmtz.add_hklin(hklin) sortmtz.sort() self._mosflm_hklout = hklout return self._mosflm_hklout
def _index_prepare(self): """Prepare to do autoindexing - in XDS terms this will mean calling xycorr, init and colspot on the input images.""" # decide on images to work with logger.debug("XDS INDEX PREPARE:") logger.debug("Wavelength: %.6f", self.get_wavelength()) logger.debug("Distance: %.2f", self.get_distance()) if self._indxr_images == []: _select_images_function = getattr( self, "_index_select_images_%s" % self._index_select_images ) wedges = _select_images_function() for wedge in wedges: self.add_indexer_image_wedge(wedge) self.set_indexer_prepare_done(True) all_images = self.get_matching_images() first = min(all_images) last = max(all_images) # next start to process these - first xycorr xycorr = self.Xycorr() xycorr.set_data_range(first, last) xycorr.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) converter = to_xds(self.get_imageset()) xds_beam_centre = converter.detector_origin xycorr.set_beam_centre(xds_beam_centre[0], xds_beam_centre[1]) for block in self._indxr_images: xycorr.add_spot_range(block[0], block[1]) # FIXME need to set the origin here xycorr.run() for file in ["X-CORRECTIONS.cbf", "Y-CORRECTIONS.cbf"]: self._indxr_payload[file] = xycorr.get_output_data_file(file) # next start to process these - then init if PhilIndex.params.xia2.settings.input.format.dynamic_shadowing: imageset = self._indxr_imagesets[0] masker = ( imageset.get_format_class() .get_instance(imageset.paths()[0]) .get_masker() ) if masker is None: # disable dynamic_shadowing PhilIndex.params.xia2.settings.input.format.dynamic_shadowing = False if PhilIndex.params.xia2.settings.input.format.dynamic_shadowing: # find the region of the scan with the least predicted shadow # to use for background determination in XDS INIT step from dxtbx.model.experiment_list import ExperimentListFactory imageset = self._indxr_imagesets[0] xsweep = self._indxr_sweeps[0] sweep_filename = os.path.join( self.get_working_directory(), "%s_indexed.expt" % xsweep.get_name() ) ExperimentListFactory.from_imageset_and_crystal(imageset, None).as_file( sweep_filename ) from xia2.Wrappers.Dials.ShadowPlot import ShadowPlot shadow_plot = ShadowPlot() shadow_plot.set_working_directory(self.get_working_directory()) auto_logfiler(shadow_plot) shadow_plot.set_sweep_filename(sweep_filename) shadow_plot.set_json_filename( os.path.join( self.get_working_directory(), "%s_shadow_plot.json" % shadow_plot.get_xpid(), ) ) shadow_plot.run() results = shadow_plot.get_results() fraction_shadowed = flex.double(results["fraction_shadowed"]) if flex.max(fraction_shadowed) == 0: PhilIndex.params.xia2.settings.input.format.dynamic_shadowing = False else: scan_points = flex.double(results["scan_points"]) scan = imageset.get_scan() oscillation = scan.get_oscillation() if self._background_images is not None: bg_images = self._background_images bg_range_deg = ( scan.get_angle_from_image_index(bg_images[0]), scan.get_angle_from_image_index(bg_images[1]), ) bg_range_width = bg_range_deg[1] - bg_range_deg[0] min_shadow = 100 best_bg_range = bg_range_deg from libtbx.utils import frange for bg_range_start in frange( flex.min(scan_points), flex.max(scan_points) - bg_range_width, step=oscillation[1], ): bg_range_deg = (bg_range_start, bg_range_start + bg_range_width) sel = (scan_points >= bg_range_deg[0]) & ( scan_points <= bg_range_deg[1] ) mean_shadow = flex.mean(fraction_shadowed.select(sel)) if mean_shadow < min_shadow: min_shadow = mean_shadow best_bg_range = bg_range_deg self._background_images = ( scan.get_image_index_from_angle(best_bg_range[0]), scan.get_image_index_from_angle(best_bg_range[1]), ) logger.debug( "Setting background images: %s -> %s" % self._background_images ) init = self.Init() for file in ["X-CORRECTIONS.cbf", "Y-CORRECTIONS.cbf"]: init.set_input_data_file(file, self._indxr_payload[file]) init.set_data_range(first, last) if self._background_images: init.set_background_range( self._background_images[0], self._background_images[1] ) else: init.set_background_range( self._indxr_images[0][0], self._indxr_images[0][1] ) for block in self._indxr_images: init.add_spot_range(block[0], block[1]) init.run() # at this stage, need to (perhaps) modify the BKGINIT.cbf image # to mark out the back stop if PhilIndex.params.xds.backstop_mask: logger.debug("Applying mask to BKGINIT.pck") # copy the original file cbf_old = os.path.join(init.get_working_directory(), "BKGINIT.cbf") cbf_save = os.path.join(init.get_working_directory(), "BKGINIT.sav") shutil.copyfile(cbf_old, cbf_save) # modify the file to give the new mask from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.xds.backstop_mask) mask.apply_mask_xds(self.get_header(), cbf_save, cbf_old) init.reload() for file in ["BLANK.cbf", "BKGINIT.cbf", "GAIN.cbf"]: self._indxr_payload[file] = init.get_output_data_file(file) if PhilIndex.params.xia2.settings.developmental.use_dials_spotfinder: spotfinder = self.DialsSpotfinder() for block in self._indxr_images: spotfinder.add_spot_range(block[0], block[1]) spotfinder.run() export = self.DialsExportSpotXDS() export.set_input_data_file( "observations.refl", spotfinder.get_output_data_file("observations.refl"), ) export.run() for file in ["SPOT.XDS"]: self._indxr_payload[file] = export.get_output_data_file(file) else: # next start to process these - then colspot colspot = self.Colspot() for file in ( "X-CORRECTIONS.cbf", "Y-CORRECTIONS.cbf", "BLANK.cbf", "BKGINIT.cbf", "GAIN.cbf", ): colspot.set_input_data_file(file, self._indxr_payload[file]) colspot.set_data_range(first, last) colspot.set_background_range( self._indxr_images[0][0], self._indxr_images[0][1] ) for block in self._indxr_images: colspot.add_spot_range(block[0], block[1]) colspot.run() for file in ["SPOT.XDS"]: self._indxr_payload[file] = colspot.get_output_data_file(file)
def _mosflm_integrate(self): '''Perform the actual integration, based on the results of the cell refinement or indexing (they have the equivalent form.)''' refinr = self.get_integrater_refiner() if not refinr.get_refiner_payload('mosflm_orientation_matrix'): raise RuntimeError('unexpected situation in indexing') lattice = refinr.get_refiner_lattice() spacegroup_number = lattice_to_spacegroup(lattice) mosaic = refinr.get_refiner_payload('mosaic') beam = refinr.get_refiner_payload('beam') distance = refinr.get_refiner_payload('distance') matrix = refinr.get_refiner_payload('mosflm_orientation_matrix') integration_params = refinr.get_refiner_payload( 'mosflm_integration_parameters') if integration_params: if 'separation' in integration_params: self.set_integrater_parameter( 'mosflm', 'separation', '%s %s' % tuple(integration_params['separation'])) if 'raster' in integration_params: self.set_integrater_parameter( 'mosflm', 'raster', '%d %d %d %d %d' % tuple(integration_params['raster'])) refinr.set_refiner_payload('mosflm_integration_parameters', None) f = open( os.path.join(self.get_working_directory(), 'xiaintegrate.mat'), 'w') for m in matrix: f.write(m) f.close() # then start the integration integrater = MosflmIntegrate() integrater.set_working_directory(self.get_working_directory()) auto_logfiler(integrater) integrater.set_refine_profiles(self._mosflm_refine_profiles) pname, xname, dname = self.get_integrater_project_info() if pname is not None and xname is not None and dname is not None: Debug.write('Harvesting: %s/%s/%s' % (pname, xname, dname)) harvest_dir = self.get_working_directory() # harvest file name will be %s.mosflm_run_start_end % dname temp_dname = '%s_%s' % \ (dname, self.get_integrater_sweep_name()) integrater.set_pname_xname_dname(pname, xname, temp_dname) integrater.set_template(os.path.basename(self.get_template())) integrater.set_directory(self.get_directory()) # check for ice - and if so, exclude (ranges taken from # XDS documentation) if self.get_integrater_ice() != 0: Debug.write('Excluding ice rings') integrater.set_exclude_ice(True) # exclude specified resolution ranges if len(self.get_integrater_excluded_regions()) != 0: regions = self.get_integrater_excluded_regions() Debug.write('Excluding regions: %s' % repr(regions)) integrater.set_exclude_regions(regions) mask = standard_mask(self.get_detector()) for m in mask: integrater.add_instruction(m) integrater.set_input_mat_file('xiaintegrate.mat') integrater.set_beam_centre(beam) integrater.set_distance(distance) integrater.set_space_group_number(spacegroup_number) integrater.set_mosaic(mosaic) if self.get_wavelength_prov() == 'user': integrater.set_wavelength(self.get_wavelength()) parameters = self.get_integrater_parameters('mosflm') integrater.update_parameters(parameters) if self._mosflm_gain: integrater.set_gain(self._mosflm_gain) # check for resolution limits if self._intgr_reso_high > 0.0: integrater.set_d_min(self._intgr_reso_high) if self._intgr_reso_low: integrater.set_d_max(self._intgr_reso_low) if PhilIndex.params.general.backstop_mask: from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.general.backstop_mask) mask = mask.calculate_mask_mosflm(self.get_header()) integrater.set_mask(mask) detector = self.get_detector() detector_width, detector_height = detector[0].get_image_size_mm() lim_x = 0.5 * detector_width lim_y = 0.5 * detector_height Debug.write('Scanner limits: %.1f %.1f' % (lim_x, lim_y)) integrater.set_limits(lim_x, lim_y) integrater.set_fix_mosaic(self._mosflm_postref_fix_mosaic) offset = self.get_frame_offset() integrater.set_image_range( (self._intgr_wedge[0] - offset, self._intgr_wedge[1] - offset)) try: integrater.run() except RuntimeError as e: if 'integration failed: reason unknown' in str(e): Chatter.write('Mosflm has failed in integration') message = 'The input was:\n\n' for input in integrater.get_all_input(): message += ' %s' % input Chatter.write(message) raise FileHandler.record_log_file( '%s %s %s %s mosflm integrate' % \ (self.get_integrater_sweep_name(), pname, xname, dname), integrater.get_log_file()) self._intgr_per_image_statistics = integrater.get_per_image_statistics( ) self._mosflm_hklout = integrater.get_hklout() Debug.write('Integration output: %s' % self._mosflm_hklout) self._intgr_n_ref = integrater.get_nref() # if a BGSIG error happened try not refining the # profile and running again... if integrater.get_bgsig_too_large(): if not self._mosflm_refine_profiles: raise RuntimeError('BGSIG error with profiles fixed') Debug.write('BGSIG error detected - try fixing profile...') self._mosflm_refine_profiles = False self.set_integrater_done(False) return if integrater.get_getprof_error(): Debug.write('GETPROF error detected - try fixing profile...') self._mosflm_refine_profiles = False self.set_integrater_done(False) return if (integrater.get_detector_gain_error() and not (self.get_imageset().get_detector()[0].get_type() == 'SENSOR_PAD')): gain = integrater.get_suggested_gain() if gain is not None: self.set_integrater_parameter('mosflm', 'gain', gain) self.set_integrater_export_parameter('mosflm', 'gain', gain) if self._mosflm_gain: Debug.write('GAIN updated to %f' % gain) else: Debug.write('GAIN found to be %f' % gain) self._mosflm_gain = gain self._mosflm_rerun_integration = True if not self._mosflm_hklout: raise RuntimeError('processing abandoned') self._intgr_batches_out = integrater.get_batches_out() mosaics = integrater.get_mosaic_spreads() if mosaics and len(mosaics) > 0: self.set_integrater_mosaic_min_mean_max( min(mosaics), sum(mosaics) / len(mosaics), max(mosaics)) else: m = indxr.get_indexer_mosaic() self.set_integrater_mosaic_min_mean_max(m, m, m) # write the report for each image as .*-#$ to Chatter - # detailed report will be written automagically to science... Chatter.write(self.show_per_image_statistics()) Chatter.write('Mosaic spread: %.3f < %.3f < %.3f' % \ self.get_integrater_mosaic_min_mean_max()) # gather the statistics from the postrefinement postref_result = integrater.get_postref_result() # now write this to a postrefinement log postref_log = os.path.join(self.get_working_directory(), 'postrefinement.log') fout = open(postref_log, 'w') fout.write('$TABLE: Postrefinement for %s:\n' % \ self._intgr_sweep_name) fout.write('$GRAPHS: Missetting angles:A:1, 2, 3, 4: $$\n') fout.write('Batch PhiX PhiY PhiZ $$ Batch PhiX PhiY PhiZ $$\n') for image in sorted(postref_result): phix = postref_result[image].get('phix', 0.0) phiy = postref_result[image].get('phiy', 0.0) phiz = postref_result[image].get('phiz', 0.0) fout.write('%d %5.2f %5.2f %5.2f\n' % \ (image, phix, phiy, phiz)) fout.write('$$\n') fout.close() if self.get_integrater_sweep_name(): pname, xname, dname = self.get_integrater_project_info() FileHandler.record_log_file('%s %s %s %s postrefinement' % \ (self.get_integrater_sweep_name(), pname, xname, dname), postref_log) return self._mosflm_hklout
def _mosflm_parallel_integrate(self): '''Perform the integration as before, but this time as a number of parallel Mosflm jobs (hence, in separate directories) and including a step of pre-refinement of the mosaic spread and missets. This will all be kind of explicit and hence probably messy!''' refinr = self.get_integrater_refiner() lattice = refinr.get_refiner_lattice() spacegroup_number = lattice_to_spacegroup(lattice) mosaic = refinr.get_refiner_payload('mosaic') beam = refinr.get_refiner_payload('beam') distance = refinr.get_refiner_payload('distance') matrix = refinr.get_refiner_payload('mosflm_orientation_matrix') integration_params = refinr.get_refiner_payload( 'mosflm_integration_parameters') if integration_params: if 'separation' in integration_params: self.set_integrater_parameter( 'mosflm', 'separation', '%s %s' % tuple(integration_params['separation'])) if 'raster' in integration_params: self.set_integrater_parameter( 'mosflm', 'raster', '%d %d %d %d %d' % tuple(integration_params['raster'])) refinr.set_refiner_payload('mosflm_integration_parameters', None) pname, xname, dname = self.get_integrater_project_info() # what follows below should (i) be run in separate directories # and (ii) be repeated N=parallel times. nproc = PhilIndex.params.xia2.settings.multiprocessing.nproc parallel = nproc # FIXME this is something of a kludge - if too few frames refinement # and integration does not work well... ideally want at least 15 # frames / chunk (say) nframes = self._intgr_wedge[1] - self._intgr_wedge[0] + 1 if parallel > nframes / 15: parallel = nframes // 15 if not parallel: raise RuntimeError, 'parallel not set' if parallel < 2: raise RuntimeError, 'parallel not parallel: %s' % parallel jobs = [] hklouts = [] nref = 0 # calculate the chunks to use offset = self.get_frame_offset() start = self._intgr_wedge[0] - offset end = self._intgr_wedge[1] - offset left_images = 1 + end - start left_chunks = parallel chunks = [] while left_images > 0: size = left_images // left_chunks chunks.append((start, start + size - 1)) start += size left_images -= size left_chunks -= 1 summary_files = [] for j in range(parallel): # make some working directories, as necessary - chunk-(0:N-1) wd = os.path.join(self.get_working_directory(), 'chunk-%d' % j) if not os.path.exists(wd): os.makedirs(wd) job = MosflmIntegrate() job.set_working_directory(wd) auto_logfiler(job) l = refinr.get_refiner_lattice() # create the starting point f = open(os.path.join(wd, 'xiaintegrate-%s.mat' % l), 'w') for m in matrix: f.write(m) f.close() spacegroup_number = lattice_to_spacegroup(lattice) job.set_refine_profiles(self._mosflm_refine_profiles) # N.B. for harvesting need to append N to dname. if pname is not None and xname is not None and dname is not None: Debug.write('Harvesting: %s/%s/%s' % (pname, xname, dname)) harvest_dir = self.get_working_directory() temp_dname = '%s_%s' % \ (dname, self.get_integrater_sweep_name()) job.set_pname_xname_dname(pname, xname, temp_dname) job.set_template(os.path.basename(self.get_template())) job.set_directory(self.get_directory()) # check for ice - and if so, exclude (ranges taken from # XDS documentation) if self.get_integrater_ice() != 0: Debug.write('Excluding ice rings') job.set_exclude_ice(True) # exclude specified resolution ranges if len(self.get_integrater_excluded_regions()) != 0: regions = self.get_integrater_excluded_regions() Debug.write('Excluding regions: %s' % `regions`) job.set_exclude_regions(regions) mask = standard_mask(self.get_detector()) for m in mask: job.add_instruction(m) job.set_input_mat_file('xiaintegrate-%s.mat' % l) job.set_beam_centre(beam) job.set_distance(distance) job.set_space_group_number(spacegroup_number) job.set_mosaic(mosaic) if self.get_wavelength_prov() == 'user': job.set_wavelength(self.get_wavelength()) parameters = self.get_integrater_parameters('mosflm') job.update_parameters(parameters) if self._mosflm_gain: job.set_gain(self._mosflm_gain) # check for resolution limits if self._intgr_reso_high > 0.0: job.set_d_min(self._intgr_reso_high) if self._intgr_reso_low: job.set_d_max(self._intgr_reso_low) if PhilIndex.params.general.backstop_mask: from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.general.backstop_mask) mask = mask.calculate_mask_mosflm(self.get_header()) job.set_mask(mask) detector = self.get_detector() detector_width, detector_height = detector[0].get_image_size_mm() lim_x = 0.5 * detector_width lim_y = 0.5 * detector_height Debug.write('Scanner limits: %.1f %.1f' % (lim_x, lim_y)) job.set_limits(lim_x, lim_y) job.set_fix_mosaic(self._mosflm_postref_fix_mosaic) job.set_pre_refinement(True) job.set_image_range(chunks[j]) # these are now running so ... jobs.append(job) continue # ok, at this stage I need to ... # # (i) accumulate the statistics as a function of batch # (ii) mong them into a single block # # This is likely to be a pain in the arse! first_integrated_batch = 1.0e6 last_integrated_batch = -1.0e6 all_residuals = [] threads = [] for j in range(parallel): job = jobs[j] # now wait for them to finish - first wait will really be the # first one, then all should be finished... thread = Background(job, 'run') thread.start() threads.append(thread) mosaics = [] postref_result = { } integrated_images_first = 1.0e6 integrated_images_last = -1.0e6 self._intgr_per_image_statistics = {} for j in range(parallel): thread = threads[j] thread.stop() job = jobs[j] # get the log file output = job.get_all_output() # record a copy of it, perhaps - though not if parallel if self.get_integrater_sweep_name() and False: pname, xname, dname = self.get_integrater_project_info() FileHandler.record_log_file( '%s %s %s %s mosflm integrate' % \ (self.get_integrater_sweep_name(), pname, xname, '%s_%d' % (dname, j)), job.get_log_file()) # look for things that we want to know... # that is, the output reflection file name, the updated # value for the gain (if present,) any warnings, errors, # or just interesting facts. batches = job.get_batches_out() integrated_images_first = min(batches[0], integrated_images_first) integrated_images_last = max(batches[1], integrated_images_last) mosaics.extend(job.get_mosaic_spreads()) if min(mosaics) < 0: raise IntegrationError, 'negative mosaic spread: %s' % min(mosaic) if (job.get_detector_gain_error() and not (self.get_imageset().get_detector()[0].get_type() == 'SENSOR_PAD')): gain = job.get_suggested_gain() if gain is not None: self.set_integrater_parameter('mosflm', 'gain', gain) self.set_integrater_export_parameter('mosflm', 'gain', gain) if self._mosflm_gain: Debug.write('GAIN updated to %f' % gain) else: Debug.write('GAIN found to be %f' % gain) self._mosflm_gain = gain self._mosflm_rerun_integration = True hklout = job.get_hklout() Debug.write('Integration output: %s' % hklout) hklouts.append(hklout) nref += job.get_nref() # if a BGSIG error happened try not refining the # profile and running again... if job.get_bgsig_too_large(): if not self._mosflm_refine_profiles: raise RuntimeError, 'BGSIG error with profiles fixed' Debug.write( 'BGSIG error detected - try fixing profile...') self._mosflm_refine_profiles = False self.set_integrater_done(False) return if job.get_getprof_error(): Debug.write( 'GETPROF error detected - try fixing profile...') self._mosflm_refine_profiles = False self.set_integrater_done(False) return # here # write the report for each image as .*-#$ to Chatter - # detailed report will be written automagically to science... self._intgr_per_image_statistics.update(job.get_per_image_statistics()) postref_result.update(job.get_postref_result()) # inspect the output for e.g. very high weighted residuals all_residuals.extend(job.get_residuals()) self._intgr_batches_out = (integrated_images_first, integrated_images_last) if mosaics and len(mosaics) > 0: self.set_integrater_mosaic_min_mean_max( min(mosaics), sum(mosaics) / len(mosaics), max(mosaics)) else: m = indxr.get_indexer_mosaic() self.set_integrater_mosaic_min_mean_max(m, m, m) Chatter.write(self.show_per_image_statistics()) Chatter.write('Mosaic spread: %.3f < %.3f < %.3f' % \ self.get_integrater_mosaic_min_mean_max()) # gather the statistics from the postrefinement for all sweeps # now write this to a postrefinement log postref_log = os.path.join(self.get_working_directory(), 'postrefinement.log') fout = open(postref_log, 'w') fout.write('$TABLE: Postrefinement for %s:\n' % \ self._intgr_sweep_name) fout.write('$GRAPHS: Missetting angles:A:1, 2, 3, 4: $$\n') fout.write('Batch PhiX PhiY PhiZ $$ Batch PhiX PhiY PhiZ $$\n') for image in sorted(postref_result): phix = postref_result[image].get('phix', 0.0) phiy = postref_result[image].get('phiy', 0.0) phiz = postref_result[image].get('phiz', 0.0) fout.write('%d %5.2f %5.2f %5.2f\n' % \ (image, phix, phiy, phiz)) fout.write('$$\n') fout.close() if self.get_integrater_sweep_name(): pname, xname, dname = self.get_integrater_project_info() FileHandler.record_log_file('%s %s %s %s postrefinement' % \ (self.get_integrater_sweep_name(), pname, xname, dname), postref_log) hklouts.sort() hklout = os.path.join(self.get_working_directory(), os.path.split(hklouts[0])[-1]) Debug.write('Sorting data to %s' % hklout) for hklin in hklouts: Debug.write('<= %s' % hklin) sortmtz = Sortmtz() sortmtz.set_hklout(hklout) for hklin in hklouts: sortmtz.add_hklin(hklin) sortmtz.sort() self._mosflm_hklout = hklout return self._mosflm_hklout
def _mosflm_integrate(self): '''Perform the actual integration, based on the results of the cell refinement or indexing (they have the equivalent form.)''' refinr = self.get_integrater_refiner() if not refinr.get_refiner_payload('mosflm_orientation_matrix'): raise RuntimeError, 'unexpected situation in indexing' lattice = refinr.get_refiner_lattice() spacegroup_number = lattice_to_spacegroup(lattice) mosaic = refinr.get_refiner_payload('mosaic') beam = refinr.get_refiner_payload('beam') distance = refinr.get_refiner_payload('distance') matrix = refinr.get_refiner_payload('mosflm_orientation_matrix') integration_params = refinr.get_refiner_payload( 'mosflm_integration_parameters') if integration_params: if 'separation' in integration_params: self.set_integrater_parameter( 'mosflm', 'separation', '%s %s' % tuple(integration_params['separation'])) if 'raster' in integration_params: self.set_integrater_parameter( 'mosflm', 'raster', '%d %d %d %d %d' % tuple(integration_params['raster'])) refinr.set_refiner_payload('mosflm_integration_parameters', None) f = open(os.path.join(self.get_working_directory(), 'xiaintegrate.mat'), 'w') for m in matrix: f.write(m) f.close() # then start the integration integrater = MosflmIntegrate() integrater.set_working_directory(self.get_working_directory()) auto_logfiler(integrater) integrater.set_refine_profiles(self._mosflm_refine_profiles) pname, xname, dname = self.get_integrater_project_info() if pname is not None and xname is not None and dname is not None: Debug.write('Harvesting: %s/%s/%s' % (pname, xname, dname)) harvest_dir = self.get_working_directory() # harvest file name will be %s.mosflm_run_start_end % dname temp_dname = '%s_%s' % \ (dname, self.get_integrater_sweep_name()) integrater.set_pname_xname_dname(pname, xname, temp_dname) integrater.set_template(os.path.basename(self.get_template())) integrater.set_directory(self.get_directory()) # check for ice - and if so, exclude (ranges taken from # XDS documentation) if self.get_integrater_ice() != 0: Debug.write('Excluding ice rings') integrater.set_exclude_ice(True) # exclude specified resolution ranges if len(self.get_integrater_excluded_regions()) != 0: regions = self.get_integrater_excluded_regions() Debug.write('Excluding regions: %s' % `regions`) integrater.set_exclude_regions(regions) mask = standard_mask(self.get_detector()) for m in mask: integrater.add_instruction(m) integrater.set_input_mat_file('xiaintegrate.mat') integrater.set_beam_centre(beam) integrater.set_distance(distance) integrater.set_space_group_number(spacegroup_number) integrater.set_mosaic(mosaic) if self.get_wavelength_prov() == 'user': integrater.set_wavelength(self.get_wavelength()) parameters = self.get_integrater_parameters('mosflm') integrater.update_parameters(parameters) if self._mosflm_gain: integrater.set_gain(self._mosflm_gain) # check for resolution limits if self._intgr_reso_high > 0.0: integrater.set_d_min(self._intgr_reso_high) if self._intgr_reso_low: integrater.set_d_max(self._intgr_reso_low) if PhilIndex.params.general.backstop_mask: from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.general.backstop_mask) mask = mask.calculate_mask_mosflm(self.get_header()) integrater.set_mask(mask) detector = self.get_detector() detector_width, detector_height = detector[0].get_image_size_mm() lim_x = 0.5 * detector_width lim_y = 0.5 * detector_height Debug.write('Scanner limits: %.1f %.1f' % (lim_x, lim_y)) integrater.set_limits(lim_x, lim_y) integrater.set_fix_mosaic(self._mosflm_postref_fix_mosaic) offset = self.get_frame_offset() integrater.set_image_range( (self._intgr_wedge[0] - offset, self._intgr_wedge[1] - offset)) try: integrater.run() except RuntimeError, e: if 'integration failed: reason unknown' in str(e): Chatter.write('Mosflm has failed in integration') message = 'The input was:\n\n' for input in integrater.get_all_input(): message += ' %s' % input Chatter.write(message) raise
def _index_prepare(self): '''Prepare to do autoindexing - in XDS terms this will mean calling xycorr, init and colspot on the input images.''' # decide on images to work with Debug.write('XDS INDEX PREPARE:') Debug.write('Wavelength: %.6f' % self.get_wavelength()) Debug.write('Distance: %.2f' % self.get_distance()) if self._indxr_images == []: _select_images_function = getattr( self, '_index_select_images_%s' % (self._index_select_images)) wedges = _select_images_function() for wedge in wedges: self.add_indexer_image_wedge(wedge) self.set_indexer_prepare_done(True) all_images = self.get_matching_images() first = min(all_images) last = max(all_images) # next start to process these - first xycorr xycorr = self.Xycorr() xycorr.set_data_range(first, last) xycorr.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) from dxtbx.serialize.xds import to_xds converter = to_xds(self.get_imageset()) xds_beam_centre = converter.detector_origin xycorr.set_beam_centre(xds_beam_centre[0], xds_beam_centre[1]) for block in self._indxr_images: xycorr.add_spot_range(block[0], block[1]) # FIXME need to set the origin here xycorr.run() for file in ['X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf']: self._indxr_payload[file] = xycorr.get_output_data_file(file) # next start to process these - then init if PhilIndex.params.xia2.settings.input.format.dynamic_shadowing: # find the region of the scan with the least predicted shadow # to use for background determination in XDS INIT step from dxtbx.serialize import dump from dxtbx.datablock import DataBlock imageset = self._indxr_imagesets[0] xsweep = self._indxr_sweeps[0] sweep_filename = os.path.join( self.get_working_directory(), '%s_datablock.json' %xsweep.get_name()) dump.datablock(DataBlock([imageset]), sweep_filename) from xia2.Wrappers.Dials.ShadowPlot import ShadowPlot shadow_plot = ShadowPlot() shadow_plot.set_working_directory(self.get_working_directory()) auto_logfiler(shadow_plot) shadow_plot.set_sweep_filename(sweep_filename) shadow_plot.set_json_filename( os.path.join( self.get_working_directory(), '%s_shadow_plot.json' %shadow_plot.get_xpid())) shadow_plot.run() results = shadow_plot.get_results() from scitbx.array_family import flex fraction_shadowed = flex.double(results['fraction_shadowed']) scan_points = flex.double(results['scan_points']) phi_width = self.get_phi_width() scan = imageset.get_scan() oscillation_range = scan.get_oscillation_range() oscillation = scan.get_oscillation() bg_images = self._background_images bg_range_deg = (scan.get_angle_from_image_index(bg_images[0]), scan.get_angle_from_image_index(bg_images[1])) bg_range_width = bg_range_deg[1] - bg_range_deg[0] min_shadow = 100 best_bg_range = bg_range_deg from libtbx.utils import frange for bg_range_start in frange(flex.min(scan_points), flex.max(scan_points) - bg_range_width, step=oscillation[1]): bg_range_deg = (bg_range_start, bg_range_start + bg_range_width) sel = (scan_points >= bg_range_deg[0]) & (scan_points <= bg_range_deg[1]) mean_shadow = flex.mean(fraction_shadowed.select(sel)) if mean_shadow < min_shadow: min_shadow = mean_shadow best_bg_range = bg_range_deg self._background_images = ( scan.get_image_index_from_angle(best_bg_range[0]), scan.get_image_index_from_angle(best_bg_range[1])) Debug.write('Setting background images: %s -> %s' %self._background_images) init = self.Init() for file in ['X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf']: init.set_input_data_file(file, self._indxr_payload[file]) init.set_data_range(first, last) if self._background_images: init.set_background_range(self._background_images[0], self._background_images[1]) else: init.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) for block in self._indxr_images: init.add_spot_range(block[0], block[1]) init.run() # at this stage, need to (perhaps) modify the BKGINIT.cbf image # to mark out the back stop if PhilIndex.params.general.backstop_mask: Debug.write('Applying mask to BKGINIT.pck') # copy the original file cbf_old = os.path.join(init.get_working_directory(), 'BKGINIT.cbf') cbf_save = os.path.join(init.get_working_directory(), 'BKGINIT.sav') shutil.copyfile(cbf_old, cbf_save) # modify the file to give the new mask from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.general.backstop_mask) mask.apply_mask_xds(self.get_header(), cbf_save, cbf_old) init.reload() for file in ['BLANK.cbf', 'BKGINIT.cbf', 'GAIN.cbf']: self._indxr_payload[file] = init.get_output_data_file(file) if PhilIndex.params.xia2.settings.developmental.use_dials_spotfinder: spotfinder = self.DialsSpotfinder() for block in self._indxr_images: spotfinder.add_spot_range(block[0], block[1]) spotfinder.run() export = self.DialsExportSpotXDS() export.set_input_data_file( 'reflections.pickle', spotfinder.get_output_data_file('reflections.pickle')) export.run() for file in ['SPOT.XDS']: self._indxr_payload[file] = export.get_output_data_file(file) else: # next start to process these - then colspot colspot = self.Colspot() for file in ['X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf', 'BLANK.cbf', 'BKGINIT.cbf', 'GAIN.cbf']: colspot.set_input_data_file(file, self._indxr_payload[file]) colspot.set_data_range(first, last) colspot.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) for block in self._indxr_images: colspot.add_spot_range(block[0], block[1]) colspot.run() for file in ['SPOT.XDS']: self._indxr_payload[file] = colspot.get_output_data_file(file) # that should be everything prepared... all of the important # files should be loaded into memory to be able to cope with # integration happening somewhere else return
def _index_prepare(self): '''Prepare to do autoindexing - in XDS terms this will mean calling xycorr, init and colspot on the input images.''' # decide on images to work with Debug.write('XDS INDEX PREPARE:') Debug.write('Wavelength: %.6f' % self.get_wavelength()) Debug.write('Distance: %.2f' % self.get_distance()) if self._indxr_images == []: _select_images_function = getattr( self, '_index_select_images_%s' % (self._index_select_images)) wedges = _select_images_function() for wedge in wedges: self.add_indexer_image_wedge(wedge) self.set_indexer_prepare_done(True) all_images = self.get_matching_images() first = min(all_images) last = max(all_images) # next start to process these - first xycorr xycorr = self.Xycorr() xycorr.set_data_range(first, last) xycorr.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) from dxtbx.serialize.xds import to_xds converter = to_xds(self.get_imageset()) xds_beam_centre = converter.detector_origin xycorr.set_beam_centre(xds_beam_centre[0], xds_beam_centre[1]) for block in self._indxr_images: xycorr.add_spot_range(block[0], block[1]) # FIXME need to set the origin here xycorr.run() for file in ['X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf']: self._indxr_payload[file] = xycorr.get_output_data_file(file) # next start to process these - then init if PhilIndex.params.xia2.settings.input.format.dynamic_shadowing: imageset = self._indxr_imagesets[0] masker = imageset.masker().format_class( imageset.paths()[0]).get_goniometer_shadow_masker() if masker is None: # disable dynamic_shadowing PhilIndex.params.xia2.settings.input.format.dynamic_shadowing = False if PhilIndex.params.xia2.settings.input.format.dynamic_shadowing: # find the region of the scan with the least predicted shadow # to use for background determination in XDS INIT step from dxtbx.serialize import dump from dxtbx.datablock import DataBlock imageset = self._indxr_imagesets[0] xsweep = self._indxr_sweeps[0] sweep_filename = os.path.join( self.get_working_directory(), '%s_datablock.json' % xsweep.get_name()) dump.datablock(DataBlock([imageset]), sweep_filename) from xia2.Wrappers.Dials.ShadowPlot import ShadowPlot shadow_plot = ShadowPlot() shadow_plot.set_working_directory(self.get_working_directory()) auto_logfiler(shadow_plot) shadow_plot.set_sweep_filename(sweep_filename) shadow_plot.set_json_filename( os.path.join(self.get_working_directory(), '%s_shadow_plot.json' % shadow_plot.get_xpid())) shadow_plot.run() results = shadow_plot.get_results() from scitbx.array_family import flex fraction_shadowed = flex.double(results['fraction_shadowed']) if flex.max(fraction_shadowed) == 0: PhilIndex.params.xia2.settings.input.format.dynamic_shadowing = False else: scan_points = flex.double(results['scan_points']) phi_width = self.get_phi_width() scan = imageset.get_scan() oscillation_range = scan.get_oscillation_range() oscillation = scan.get_oscillation() if self._background_images is not None: bg_images = self._background_images bg_range_deg = (scan.get_angle_from_image_index( bg_images[0]), scan.get_angle_from_image_index( bg_images[1])) bg_range_width = bg_range_deg[1] - bg_range_deg[0] min_shadow = 100 best_bg_range = bg_range_deg from libtbx.utils import frange for bg_range_start in frange(flex.min(scan_points), flex.max(scan_points) - bg_range_width, step=oscillation[1]): bg_range_deg = (bg_range_start, bg_range_start + bg_range_width) sel = (scan_points >= bg_range_deg[0]) & ( scan_points <= bg_range_deg[1]) mean_shadow = flex.mean(fraction_shadowed.select(sel)) if mean_shadow < min_shadow: min_shadow = mean_shadow best_bg_range = bg_range_deg self._background_images = (scan.get_image_index_from_angle( best_bg_range[0]), scan.get_image_index_from_angle( best_bg_range[1])) Debug.write('Setting background images: %s -> %s' % self._background_images) init = self.Init() for file in ['X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf']: init.set_input_data_file(file, self._indxr_payload[file]) init.set_data_range(first, last) if self._background_images: init.set_background_range(self._background_images[0], self._background_images[1]) else: init.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) for block in self._indxr_images: init.add_spot_range(block[0], block[1]) init.run() # at this stage, need to (perhaps) modify the BKGINIT.cbf image # to mark out the back stop if PhilIndex.params.general.backstop_mask: Debug.write('Applying mask to BKGINIT.pck') # copy the original file cbf_old = os.path.join(init.get_working_directory(), 'BKGINIT.cbf') cbf_save = os.path.join(init.get_working_directory(), 'BKGINIT.sav') shutil.copyfile(cbf_old, cbf_save) # modify the file to give the new mask from xia2.Toolkit.BackstopMask import BackstopMask mask = BackstopMask(PhilIndex.params.general.backstop_mask) mask.apply_mask_xds(self.get_header(), cbf_save, cbf_old) init.reload() for file in ['BLANK.cbf', 'BKGINIT.cbf', 'GAIN.cbf']: self._indxr_payload[file] = init.get_output_data_file(file) if PhilIndex.params.xia2.settings.developmental.use_dials_spotfinder: spotfinder = self.DialsSpotfinder() for block in self._indxr_images: spotfinder.add_spot_range(block[0], block[1]) spotfinder.run() export = self.DialsExportSpotXDS() export.set_input_data_file( 'reflections.pickle', spotfinder.get_output_data_file('reflections.pickle')) export.run() for file in ['SPOT.XDS']: self._indxr_payload[file] = export.get_output_data_file(file) else: # next start to process these - then colspot colspot = self.Colspot() for file in [ 'X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf', 'BLANK.cbf', 'BKGINIT.cbf', 'GAIN.cbf' ]: colspot.set_input_data_file(file, self._indxr_payload[file]) colspot.set_data_range(first, last) colspot.set_background_range(self._indxr_images[0][0], self._indxr_images[0][1]) for block in self._indxr_images: colspot.add_spot_range(block[0], block[1]) colspot.run() for file in ['SPOT.XDS']: self._indxr_payload[file] = colspot.get_output_data_file(file) # that should be everything prepared... all of the important # files should be loaded into memory to be able to cope with # integration happening somewhere else return