Пример #1
0
def main():
    parser = argparse.ArgumentParser(description='Convert Xija JSON model spec'
                                     ' to Python')
    parser.add_argument('model_spec',
                        type=str,
                        help='Input Xija model spec file name')
    parser.add_argument('--force',
                        action='store_true',
                        help='Overwrite existing outfile')
    parser.add_argument('--outfile',
                        type=str,
                        help='Output Python file (default=<model_spec>.py)')
    args = parser.parse_args()

    infile = args.model_spec
    outfile = args.outfile

    if outfile is None:
        if infile.endswith('.json'):
            outfile = infile[:-5] + '.py'
        else:
            outfile = infile + '.py'

    if os.path.exists(outfile) and not args.force:
        print('Error: {} exists.  Use --force to overwrite.'.format(outfile))
        sys.exit(1)

    model = xija.XijaModel(model_spec=infile)
    model.write(outfile)
    print('Wrote', outfile)
Пример #2
0
def _get_model_for_dP_pitches(solar_class, msid, dP_pitches, dPs):
    model = xija.XijaModel(msid, start='2021:001', stop='2021:005')
    model.add(xija.Node, msid)
    model.add(xija.Pitch)
    model.add(xija.Eclipse)
    model.add(xija.SimZ)
    model.add(xija.Roll)
    model.add(xija.DetectorHousingHeater)
    model.add(solar_class,
              P_pitches=[45, 90, 135, 180],
              dP_pitches=dP_pitches,
              Ps=[0.0, 1.0, 1.0, 0.0],
              dPs=dPs,
              ampl=0.0,
              eclipse_comp='eclipse',
              epoch='2020:001',
              node=msid,
              pitch_comp='pitch',
              )
    model.add(xija.HeatSink,
              T=-20.0,
              node=msid,
              tau=30.0,
              )
    model.add(xija.StepFunctionPower,
              P=0.1,
              id='_1iru',
              node=msid,
              time='2021:003'
              )
    return model
Пример #3
0
 def _compute_model(self, name, tstart, tstop, dt, T_init,
                    evolve_method=None, rk4=None):
     if name == "fptemp_11":
         name = "fptemp"
     model = xija.XijaModel(name, start=tstart, stop=tstop, dt=dt,
                            model_spec=self.model_spec,
                            evolve_method=evolve_method, rk4=rk4)
     model.comp[name].set_data(T_init)
     for t in ["dea0", "dpa0"]:
         if t in model.comp:
             model.comp[t].set_data(T_init)
     model.make()
     model.calc()
     return model
Пример #4
0
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Example with a single node (ACA CCD temperature) with solar heating
(2 bins).
"""

import xija

name = __file__[:-3]

model = xija.XijaModel(name, start='2015:001', stop='2015:050')

model.add(xija.Node, 'aacccdpt')

model.add(xija.Pitch)

model.add(xija.Eclipse)

model.add(xija.SolarHeat,
          node='aacccdpt',
          pitch_comp='pitch',
          eclipse_comp='eclipse',
          P_pitches=[45, 180],
          Ps=[0.0, 0.0],
          ampl=0.0,
          epoch='2010:001',
         )

model.write('{}.json'.format(name))
# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
import matplotlib.pyplot as plt

import xija
from Chandra.Time import DateTime
from kadi import events

start = '2014:200'
stop = '2015:150'

model = xija.XijaModel('acisfp',
                       model_spec='acisfp_dh_spec.json',
                       start=start,
                       stop=stop)
model.make()

shcb = model.comp['solarheat__1cbat']
fptemp = model.comp['fptemp']
dh = model.comp['dh_heater']

# Calculate model with best fit dh_heater bias
model.calc()
dt_best = (fptemp.dvals - fptemp.mvals)

# Force bias to 0
shcb.dh_heater_bias = 0.0
model.calc()
dt_zero = (fptemp.dvals - fptemp.mvals)

science_times = (~events.rad_zones(pad=3600)).intervals(start, stop)
Пример #6
0
import sys
import xija

model = xija.XijaModel('4hfspat',
                       start='2017:301:00:01:50.816',
                       stop='2021:039:23:53:18.816',
                       dt=328.0,
                       evolve_method=1,
                       rk4=0)

model.add(
    xija.Node,
    '4hfspat',
)
model.add(
    xija.Delay,
    '4hfspat',
    delay=0,
)
model.add(xija.Pitch, )
model.add(xija.Eclipse, )
model.add(
    xija.SolarHeat,
    P_pitches=[45, 70, 90, 115, 140, 160, 180],
    Ps=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
    ampl=0.0,
    eclipse_comp='eclipse',
    epoch='2021:001',
    node='4hfspat',
    pitch_comp='pitch',
)
Пример #7
0
# Licensed under a 3-clause BSD style license - see LICENSE.rst
import sys
import xija

model = xija.XijaModel(u'example4', start='2014:205:12:10:16.816', stop='2015:240:11:43:44.816', dt=328.0)

model.add(xija.Node,
          u'aacccdpt',
         )
model.add(xija.Pitch,
         )
model.add(xija.Eclipse,
         )

model.add(xija.Node,
          u'aca0',
          sigma=100000.0,
         )

model.add(xija.SolarHeat,
          u'aca0',
          u'pitch',
          u'eclipse',
          [45, 70, 90, 115, 140, 180],
          [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
          epoch=u'2015:040',
          ampl=0.0,
         )
model.add(xija.HeatSink,
          u'aca0',
          tau=30.0,
Пример #8
0
Файл: fit.py Проект: sot/xijafit
    def __init__(self,
                 modelobject,
                 days=180,
                 stop=None,
                 start=None,
                 set_data_exprs=None,
                 set_data=None,
                 inherit_from=None,
                 keep_epoch=False,
                 quiet=False,
                 name=None,
                 snapshotfile=None):
        """Initialize XijaFit class.

        :param filename: Full path of file containing parameters to import
        :param days: Number of days of data to use to fit the model
        :param stop: Stop date for model fit duration
        :param set_data_exprs: Iterable of initial data values in the format: '<comp_name>=<value>'
        :param set_data: Dictionary of initialization parameters in one of the following formats: 
            {<comp_name>: <value>} or {<comp_name>: {'times':<times>, 'data':<value>}}
        :param inherit_from: Full path of file containing parameters to inherit
        :param keep_epoch: Maintain epoch in SolarHeat models (default=recenter on fit interval)
        :param quiet: Suppress screen output
        ;param snapshotfile: json file containing fit snapshots
        """

        self.fit_logger = logging.getLogger('fit')
        self.fit_logger.setLevel(logging.INFO)

        self.sherpa_logger = logging.getLogger('sherpa')
        self.sherpa_logger.setLevel(logging.INFO)

        self.log_capture_string = io.StringIO()
        ch = logging.StreamHandler(self.log_capture_string)
        ch.setLevel(logging.INFO)
        formatter = logging.Formatter(
            '[%(levelname)s] (%(processName)-10s) %(message)s')
        ch.setFormatter(formatter)
        self.fit_logger.addHandler(ch)

        self.sherpa_log_capture_string = io.StringIO()
        sch = logging.StreamHandler(self.sherpa_log_capture_string)
        sch.setLevel(logging.INFO)
        sformatter = logging.Formatter(
            '[%(levelname)s] (%(processName)-10s) %(message)s')
        sch.setFormatter(sformatter)
        self.sherpa_logger.addHandler(sch)

        # Set initial times.
        if stop and not start:
            self.start = DateTime(DateTime(stop).secs - days * 86400).date[:8]
            self.stop = stop
        elif start and not stop:
            self.start = start
            self.stop = DateTime(DateTime(stop).secs + days * 86400).date[:8]
        elif start and stop:
            self.start = start
            self.stop = stop
            self.days = np.floor(
                (DateTime(stop).secs - DateTime(start).secs) / (3600. * 24.))
        else:
            self.start = DateTime(DateTime().secs - 3600 * 24 * 192).date
            self.stop = DateTime(DateTime().secs - 3600 * 24 * 10).date

        # Initialize Xija model object.
        self.model = xija.XijaModel(name or 'xijamodel',
                                    self.start,
                                    self.stop,
                                    model_spec=modelobject)

        self.model_spec = self.model.model_spec

        if name:
            self.model_spec['name'] = name

        self.set_data_exprs = set_data_exprs
        if self.set_data_exprs:
            self.set_init_data(set_data_exprs)

        if set_data:
            for key, value in set_data.items():
                if isinstance(value, dict):
                    self.model.comp[key].set_data(value['data'],
                                                  value['times'])
                else:
                    self.model.comp[key].set_data(value)

        # "make" model.
        self.model.make()

        # Load parameter values from inherited model file where parameter names match.
        if inherit_from:
            self.inherit_param_from(inherit_from)

        # Set epoch
        self.keep_epoch = keep_epoch
        if not self.keep_epoch:
            self.set_epoch()

        if snapshotfile:
            self.snapshots = json.load(open(snapshotfile, 'r'))
        else:
            self.snapshots = []
        self.save_snapshot()
Пример #9
0
This shows necessary inputs and runs without using the eng archive.
The model prediction is completely wrong because all values are
set to a constant in this example instead of the correct time-varying
values.
"""

import xija
import Ska.engarchive.fetch_eng as fetch_eng
from Ska.Matplotlib import plot_cxctime

start = '2012:001'
stop = '2012:005'

model = xija.XijaModel('psmc',
                       model_spec='psmc_spec.json',
                       start=start,
                       stop=stop)

## PREDICTED COMPONENTS

# Use MSID values from telemetry to initialize if available
model.comp['1pdeaat'].set_data(20.0)
model.comp['pin1at'].set_data(20.0)

## INPUT DATA COMPONENTS

# These initializations are used needed for predicting into the future.
# For analyzing back-orbit data, do not set any of these and let xija
# grab the right values from telemetry.

# All the usual values here
Пример #10
0
 def _compute_acis_model(self, name, tstart, tstop, states, dt, T_init,
                         no_eclipse=False, evolve_method=None, rk4=None):
     import re
     from acis_thermal_check import calc_pitch_roll
     pattern = re.compile("q[1-4]")
     check_obj = getattr(self.model_check, model_classes[self.sname])()
     if name == "fptemp_11":
         name = "fptemp"
     model = xija.XijaModel(name, start=tstart, stop=tstop, dt=dt, 
                            model_spec=self.model_spec, rk4=rk4,
                            evolve_method=evolve_method)
     ephem = self._get_ephemeris(model.tstart, model.tstop, model.times)
     if states is None:
         state_times = model.times
         state_names = ["ccd_count", "fep_count", "vid_board", 
                        "clocking", "pitch", "roll"]
         if 'aoattqt1' in model.comp:
             state_names += ["q1", "q2", "q3", "q4"]
         states = {}
         for n in state_names:
             nstate = n
             ncomp = n
             if pattern.match(n):
                 ncomp = f'aoattqt{n[-1]}'
             elif name == "roll":
                 nstate = "off_nom_roll"
             states[nstate] = np.array(model.comp[ncomp].dvals)
     else:
         if isinstance(states, np.ndarray):
             state_names = states.dtype.names
         else:
             state_names = list(states.keys())
         state_times = np.array([states["tstart"], states["tstop"]])
         model.comp['sim_z'].set_data(np.array(states['simpos']), state_times)
         if 'pitch' in state_names:
             model.comp['pitch'].set_data(np.array(states['pitch']), state_times)
         else:
             pitch, roll = calc_pitch_roll(model.times, ephem, states)
             model.comp['pitch'].set_data(pitch, model.times)
             model.comp['roll'].set_data(roll, model.times)
         for st in ('ccd_count', 'fep_count', 'vid_board', 'clocking'):
             model.comp[st].set_data(np.array(states[st]), state_times)
         if 'dh_heater' in model.comp:
             dhh = states["dh_heater"] if "dh_heater" in state_names else 0
             model.comp['dh_heater'].set_data(dhh, state_times)
         if "off_nom_roll" in state_names:
             roll = np.array(states["off_nom_roll"])
             model.comp["roll"].set_data(roll, state_times)
     if 'dpa_power' in model.comp:
         # This is just a hack, we're not
         # really setting the power to zero.
         model.comp['dpa_power'].set_data(0.0)
     model.comp[name].set_data(T_init)
     if no_eclipse:
         model.comp["eclipse"].set_data(False)
     check_obj._calc_model_supp(model, state_times, states, ephem, None)
     if self.name == "fptemp_11" and self.no_earth_heat:
         model.comp["earthheat__fptemp"].k = 0.0
     model.make()
     model.calc()
     return model