def test_run_glue(self): import xla_spawn tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(sys, "argv", testargs): start = time() xla_spawn.main() end = time() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start, 500)
def test_trainer_tpu(self): import xla_spawn testargs = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(sys, "argv", testargs): xla_spawn.main()
def test_run_glue(self): import xla_spawn stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) output_directory = "run_glue_output" testargs = f""" text-classification/run_glue.py --num_cores=8 text-classification/run_glue.py --do_train --do_eval --task_name=MRPC --data_dir=../glue_data/MRPC --cache_dir=./cache_dir --num_train_epochs=1 --max_seq_length=128 --learning_rate=3e-5 --output_dir={output_directory} --overwrite_output_dir --logging_steps=5 --save_steps=5 --overwrite_cache --tpu_metrics_debug --model_name_or_path=bert-base-cased --per_device_train_batch_size=64 --per_device_eval_batch_size=64 --evaluate_during_training --overwrite_cache """.split() with patch.object(sys, "argv", testargs): start = time() xla_spawn.main() end = time() result = {} with open(f"{output_directory}/eval_results_mrpc.txt") as f: lines = f.readlines() for line in lines: key, value = line.split(" = ") result[key] = float(value) del result["eval_loss"] for value in result.values(): # Assert that the model trains self.assertGreaterEqual(value, 0.70) # Assert that the script takes less than 100 seconds to make sure it doesn't hang. self.assertLess(end - start, 100)