'Ti', 'Ta', 'Hf', 'Re', 'V', 'B', 'N', 'O', 'S', 'Zr' ] df[ele] = df[ele].fillna(0) df = df.dropna(subset=[ 'CT_RT', 'CT_CS', 'CT_EL', 'CT_RA', 'CT_Temp', 'Normal', 'Temper1', 'AGS No.', 'CT_MCR' ]) df['log_CT_CS'] = np.log(df['CT_CS']) df['log_CT_MCR'] = np.log(df['CT_MCR']) features = [ i for i in df.columns if i not in ['CT_RT', 'CT_CS', 'CT_MCR', 'ID'] ] X = df[features].to_numpy(np.float32) y = df['CT_RT'].to_numpy(np.float32) pdata = ProcessData(X=X, y=y, features=features) #pdata.clean_data(scale_strategy={'strategy': 'power_transform', # 'method': 'yeo-johnson'}) pdata.clean_data(scale_strategy={'strategy': 'RobustScaler'}) data = pdata.get_data() scale = pdata.scale del pdata X = data['X'][data['y'] < 200000] y = data['y'][data['y'] < 200000] skreg = SKREG(X=X, y=y, estimator='LR', validation='5-Fold') skreg.run_reg() print(skreg.__dict__)
features = [i for i in df.columns if i not in ['CT_RT', 'CT_Temp', 'ID', 'CT_CS', 'LMP_Model', 'CT_MCR']] df = df[df['CT_RT'] < 200000] X = df[features].to_numpy(np.float32) y = df['LMP_Model'].to_numpy(np.float32) y2 = df[['ID', 'CT_RT', 'CT_Temp', 'CT_CS']].values.tolist() pdata = ProcessData(X=X, y=y, y2=y2, features=features) pdata.clean_data() data = pdata.get_data() scale = pdata.scale del pdata CT_RT = np.array([i[1] for i in data['y2']]) CT_Temp = np.array([i[2] for i in data['y2']]) CT_CS = np.array([i[3] for i in data['y2']]) ID = [i[0] for i in data['y2']] C = np.array([25 for i in ID]) skreg = SKREG(X=data['X'], y=data['y'], estimator="LR", validation="3-Fold", CT_Temp=CT_Temp, CT_RT=CT_RT, C=C) skreg.run_reg() print(skreg.__dict__)
'activation': ['relu'], 'solver': ['lbfgs'], 'alpha': [ 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 ], 'learning_rate': ['constant'] } mlpgrid = SKGridReg(X=X, y=y, estimator='MLP', estimator_param_space=param_space, cv=10) mlpgrid.run_grid_search() print(mlpgrid.__dict__) np.save('grid_results_without_weighted.npy', mlpgrid.__dict__) skmlp = SKREG(X=X, y=y, estimator='MLP', estimator_param=mlpgrid.best_params, validation='5-Fold') skmlp.run_reg() skmlp.__dict__['features'] = metadata print(skmlp.__dict__) np.save('mlp_run.npy', skmlp.__dict__) skmlp.plot_parity(data='train').savefig('train_parity_plot.png') skmlp.plot_parity(data='test').savefig('test_parity_plot.png')