Пример #1
0
    def run(self):
        seed = 13
        random.seed(seed)
        np.random.seed(seed)

        EXP_DIR = os.path.dirname(__file__)
        EXP = "annot"

        model_file = f"{EXP_DIR}/results/{EXP}.mod"
        log_file = f"{EXP_DIR}/results/{EXP}.log"
        xnmt.tee.utils.dy.DynetParams().set_mem(
            1024)  #Doesnt work figure out how to set memory
        xnmt.tee.set_out_file(log_file, exp_name=EXP)

        ParamManager.init_param_col()
        ParamManager.param_col.model_file = model_file

        pre_runner = PreprocRunner(
            tasks=[
                PreprocTokenize(
                    in_files=
                    [  #f'{EXP_DIR}/conala-corpus/conala-trainnodev.snippet',
                        #f'{EXP_DIR}/conala-corpus/conala-trainnodev.intent',
                        #f'{EXP_DIR}/conala-corpus/conala-dev.intent',
                        #f'{EXP_DIR}/conala-corpus/conala-dev.snippet',
                        #f'{EXP_DIR}/conala-corpus/conala-test.intent',
                        #f'{EXP_DIR}/conala-corpus/conala-test.snippet',
                        f'{EXP_DIR}/conala-corpus/attack_code_train.txt',
                        f'{EXP_DIR}/conala-corpus/attack_text_train.txt',
                        f'{EXP_DIR}/conala-corpus/attack_code_test.txt',
                        f'{EXP_DIR}/conala-corpus/attack_text_test.txt'

                        #f'{EXP_DIR}/conala-corpus/all.code',
                        #f'{EXP_DIR}/conala-corpus/all.anno'
                    ],
                    out_files=
                    [  #f'{EXP_DIR}/conala-corpus/conala-trainnodev.tmspm4000.snippet',
                        #f'{EXP_DIR}/conala-corpus/conala-trainnodev.tmspm4000.intent',
                        #f'{EXP_DIR}/conala-corpus/conala-dev.tmspm4000.intent',
                        #f'{EXP_DIR}/conala-corpus/conala-dev.tmspm4000.snippet',
                        #f'{EXP_DIR}/conala-corpus/conala-test.tmspm4000.intent',
                        #f'{EXP_DIR}/conala-corpus/conala-test.tmspm4000.snippet',
                        f'{EXP_DIR}/conala-corpus/attack-train.tmspm4000.snippet',
                        f'{EXP_DIR}/conala-corpus/attack-train.tmspm4000.intent',
                        f'{EXP_DIR}/conala-corpus/attack-test.tmspm4000.snippet',
                        f'{EXP_DIR}/conala-corpus/attack-test.tmspm4000.intent'
                        #f'{EXP_DIR}/conala-corpus/django.tmspm4000.snippet',
                        #f'{EXP_DIR}/conala-corpus/django.tmspm4000.intent'
                    ],
                    specs=[{
                        'filenum':
                        'all',
                        'tokenizers': [
                            SentencepieceTokenizer(
                                hard_vocab_limit=False,
                                train_files=[
                                    f'{EXP_DIR}/conala-corpus/attack_text_train.txt',
                                    f'{EXP_DIR}/conala-corpus/attack_code_train.txt'
                                ],
                                vocab_size=self.vocab_size,
                                model_type=self.model_type,
                                model_prefix=
                                'conala-corpus/attack-train.tmspm4000.spm')
                        ]
                    }]),
                PreprocVocab(
                    in_files=[
                        f'{EXP_DIR}/conala-corpus/attack-train.tmspm4000.intent',
                        f'{EXP_DIR}/conala-corpus/attack-train.tmspm4000.snippet'
                    ],
                    out_files
                    =[
                        f'{EXP_DIR}/conala-corpus/attack-train.tmspm4000.intent.vocab',
                        f'{EXP_DIR}/conala-corpus/attack-train.tmspm4000.snippet.vocab'
                    ],
                    specs=[{
                        'filenum':
                        'all',
                        'filters': [VocabFiltererFreq(min_freq=self.min_freq)]
                    }])
            ],
            overwrite=False)

        src_vocab = Vocab(
            vocab_file=
            f"{EXP_DIR}/conala-corpus/attack-train.tmspm4000.intent.vocab")
        trg_vocab = Vocab(
            vocab_file=
            f"{EXP_DIR}/conala-corpus/attack-train.tmspm4000.snippet.vocab")

        batcher = Batcher(batch_size=64)

        inference = AutoRegressiveInference(search_strategy=BeamSearch(
            len_norm=PolynomialNormalization(apply_during_search=True),
            beam_size=5),
                                            post_process='join-piece')

        layer_dim = self.layer_dim

        model = DefaultTranslator(
            src_reader=PlainTextReader(vocab=src_vocab),
            trg_reader=PlainTextReader(vocab=trg_vocab),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim,
                                            vocab=src_vocab),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim,
                                        layers=self.layers),
            attender=MlpAttender(hidden_dim=layer_dim,
                                 state_dim=layer_dim,
                                 input_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim,
                                            vocab=trg_vocab),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(
                    input_dim=layer_dim,
                    hidden_dim=layer_dim,
                ),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                scorer=Softmax(vocab_size=len(trg_vocab), input_dim=layer_dim),
                trg_embed_dim=layer_dim,
                input_feeding=False,
                bridge=CopyBridge(dec_dim=layer_dim)),
            inference=inference)

        #decoder = AutoRegressiveDecoder(bridge=CopyBridge(),inference=inference))

        train = SimpleTrainingRegimen(
            name=f"{EXP}",
            model=model,
            batcher=WordSrcBatcher(avg_batch_size=64),
            trainer=AdamTrainer(alpha=self.alpha),
            patience=3,
            lr_decay=0.5,
            restart_trainer=True,
            run_for_epochs=self.epochs,
            src_file=f"{EXP_DIR}/conala-corpus/attack-train.tmspm4000.intent",
            trg_file=f"{EXP_DIR}/conala-corpus/attack-train.tmspm4000.snippet",
            dev_tasks=[
                LossEvalTask(
                    src_file=
                    f"{EXP_DIR}/conala-corpus/attack-test.tmspm4000.intent",
                    ref_file=
                    f'{EXP_DIR}/conala-corpus/attack-test.tmspm4000.snippet',
                    model=model,
                    batcher=WordSrcBatcher(avg_batch_size=64)),
                AccuracyEvalTask(
                    eval_metrics='bleu',
                    src_file=
                    f'{EXP_DIR}/conala-corpus/attack-test.tmspm4000.intent',
                    ref_file=f'{EXP_DIR}/conala-corpus/attack_text_test.txt',
                    hyp_file=f'results/{EXP}.dev.hyp',
                    model=model)
            ])

        evaluate = [
            AccuracyEvalTask(
                eval_metrics="bleu",
                #src_file=f"{EXP_DIR}/conala-corpus/conala-test.tmspm4000.intent",
                src_file=
                f"{EXP_DIR}/conala-corpus/attack-test.tmspm4000.intent",
                #ref_file=f"{EXP_DIR}/conala-corpus/all.code",
                #ref_file = f"{EXP_DIR}/conala-corpus/conala-test.snippet",
                ref_file=f"{EXP_DIR}/conala-corpus/attack_text_test.txt",
                hyp_file=f"results/{EXP}.test.hyp",
                inference=inference,
                model=model)
        ]

        standard_experiment = Experiment(exp_global=ExpGlobal(
            default_layer_dim=512,
            dropout=0.3,
            log_file=log_file,
            model_file=model_file),
                                         name="annot",
                                         model=model,
                                         train=train,
                                         evaluate=evaluate)

        # run experiment
        standard_experiment(
            save_fct=lambda: save_to_file(model_file, standard_experiment))

        exit()
Пример #2
0
EXP = "programmatic"

model_file = f"{EXP_DIR}/models/{EXP}.mod"
log_file = f"{EXP_DIR}/logs/{EXP}.log"

xnmt.tee.set_out_file(log_file, EXP)

ParamManager.init_param_col()
ParamManager.param_col.model_file = model_file

src_vocab = Vocab(vocab_file="examples/data/head.ja.vocab")
trg_vocab = Vocab(vocab_file="examples/data/head.en.vocab")

batcher = SrcBatcher(batch_size=64)

inference = AutoRegressiveInference(batcher=InOrderBatcher(batch_size=1))

layer_dim = 512

model = DefaultTranslator(
    src_reader=PlainTextReader(vocab=src_vocab),
    trg_reader=PlainTextReader(vocab=trg_vocab),
    src_embedder=SimpleWordEmbedder(emb_dim=layer_dim,
                                    vocab_size=len(src_vocab)),
    encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                hidden_dim=layer_dim,
                                layers=1),
    attender=MlpAttender(hidden_dim=layer_dim,
                         state_dim=layer_dim,
                         input_dim=layer_dim),
    decoder=AutoRegressiveDecoder(