def test_policy(self): event_trigger.set_train(True) self.model.policy_learning = PolicyGradient(input_dim=3 * self.layer_dim) mle_loss = MLELoss() loss = mle_loss.calc_loss(self.model, self.src[0], self.trg[0]) event_trigger.calc_additional_loss(self.trg[0], self.model, loss)
def assert_single_loss_equals_batch_loss(self, model, pad_src_to_multiple=1): """ Tests whether single loss equals batch loss. Here we don't truncate the target side and use masking. """ batch_size = 5 src_sents = self.src_data[:batch_size] src_min = min([x.sent_len() for x in src_sents]) src_sents_trunc = [s.words[:src_min] for s in src_sents] for single_sent in src_sents_trunc: single_sent[src_min - 1] = Vocab.ES while len(single_sent) % pad_src_to_multiple != 0: single_sent.append(Vocab.ES) trg_sents = sorted(self.trg_data[:batch_size], key=lambda x: x.sent_len(), reverse=True) trg_max = max([x.sent_len() for x in trg_sents]) np_arr = np.zeros([batch_size, trg_max]) for i in range(batch_size): for j in range(trg_sents[i].sent_len(), trg_max): np_arr[i, j] = 1.0 trg_masks = Mask(np_arr) trg_sents_padded = [[w for w in s] + [Vocab.ES] * (trg_max - s.sent_len()) for s in trg_sents] src_sents_trunc = [ sent.SimpleSentence(words=s) for s in src_sents_trunc ] trg_sents_padded = [ sent.SimpleSentence(words=s) for s in trg_sents_padded ] single_loss = 0.0 for sent_id in range(batch_size): tt.reset_graph() train_loss = MLELoss().calc_loss(model=model, src=src_sents_trunc[sent_id], trg=trg_sents[sent_id]).value() single_loss += train_loss[0] tt.reset_graph() batched_loss = MLELoss().calc_loss(model=model, src=mark_as_batch(src_sents_trunc), trg=mark_as_batch( trg_sents_padded, trg_masks)).value() self.assertAlmostEqual(single_loss, np.sum(batched_loss), places=4)
def test_train_dev_loss_equal(self): layer_dim = 512 batcher = SrcBatcher(batch_size=5, break_ties_randomly=False) train_args = {} train_args['src_file'] = "examples/data/head.ja" train_args['trg_file'] = "examples/data/head.en" train_args['loss_calculator'] = MLELoss() train_args['model'] = DefaultTranslator(src_reader=PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.ja.vocab")), trg_reader=PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab")), src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), encoder=BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), decoder=AutoRegressiveDecoder(input_dim=layer_dim, embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="model.decoder.rnn"), transform=NonLinear(input_dim=layer_dim*2, output_dim=layer_dim), scorer=Softmax(input_dim=layer_dim, vocab_size=100), bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) train_args['dev_tasks'] = [LossEvalTask(model=train_args['model'], src_file="examples/data/head.ja", ref_file="examples/data/head.en", batcher=batcher)] train_args['trainer'] = DummyTrainer() train_args['batcher'] = batcher train_args['run_for_epochs'] = 1 training_regimen = regimens.SimpleTrainingRegimen(**train_args) training_regimen.run_training(save_fct = lambda: None) self.assertAlmostEqual(training_regimen.train_loss_tracker.epoch_loss.sum_factors() / training_regimen.train_loss_tracker.epoch_words, training_regimen.dev_loss_tracker.dev_score.loss, places=5)
def test_reinforce_loss(self): fertility_loss = GlobalFertilityLoss() mle_loss = MLELoss() loss = CompositeLoss(pt_losses=[mle_loss, fertility_loss]).calc_loss( self.model, self.src[0], self.trg[0]) reinforce_loss = event_trigger.calc_additional_loss( self.trg[0], self.model, loss) pl = self.model.encoder.policy_learning # Ensure correct length src = self.src[0] mask = src.mask.np_arr outputs = self.segmenting_encoder.compose_output actions = self.segmenting_encoder.segment_actions # Ensure sample == outputs for i, sample_item in enumerate(actions): # The last segmentation is 1 self.assertEqual(sample_item[-1], src[i].len_unpadded()) self.assertTrue("mle" in loss.expr_factors) self.assertTrue("global_fertility" in loss.expr_factors) self.assertTrue("rl_reinf" in reinforce_loss.expr_factors) self.assertTrue("rl_baseline" in reinforce_loss.expr_factors) self.assertTrue("rl_confpen" in reinforce_loss.expr_factors) # Ensure we are sampling from the policy learning self.assertEqual(self.model.encoder.segmenting_action, SegmentingSeqTransducer.SegmentingAction.POLICY)
def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 64 xnmt.events.clear() ParamManager.init_param_col() self.segment_encoder_bilstm = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim) self.segment_composer = SumComposer() self.src_reader = CharFromWordTextReader(vocab=Vocab(vocab_file="examples/data/head.ja.charvocab")) self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab")) self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5) baseline = Linear(input_dim=layer_dim, output_dim=1) policy_network = Linear(input_dim=layer_dim, output_dim=2) self.poisson_prior = PoissonPrior(mu=3.3) self.eps_greedy = EpsilonGreedy(eps_prob=0.0, prior=self.poisson_prior) self.conf_penalty = ConfidencePenalty() self.policy_gradient = PolicyGradient(input_dim=layer_dim, output_dim=2, baseline=baseline, policy_network=policy_network, z_normalization=True, conf_penalty=self.conf_penalty) self.length_prior = PoissonLengthPrior(lmbd=3.3, weight=1) self.segmenting_encoder = SegmentingSeqTransducer( embed_encoder = self.segment_encoder_bilstm, segment_composer = self.segment_composer, final_transducer = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), policy_learning = self.policy_gradient, eps_greedy = self.eps_greedy, length_prior = self.length_prior, ) self.model = DefaultTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), encoder=self.segmenting_encoder, attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), decoder=AutoRegressiveDecoder(input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="decoder"), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), scorer=Softmax(vocab_size=100, input_dim=layer_dim), trg_embed_dim=layer_dim, bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) event_trigger.set_train(True) self.layer_dim = layer_dim self.src_data = list(self.model.src_reader.read_sents("examples/data/head.ja")) self.trg_data = list(self.model.trg_reader.read_sents("examples/data/head.en")) my_batcher = batchers.TrgBatcher(batch_size=3) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)
def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 32 xnmt.events.clear() ParamManager.init_param_col() edge_vocab = Vocab(vocab_file="examples/data/parse/head.en.edge_vocab") node_vocab = Vocab(vocab_file="examples/data/parse/head.en.node_vocab") value_vocab = Vocab(vocab_file="examples/data/head.en.vocab") self.src_reader = input_readers.PlainTextReader(vocab=value_vocab) self.trg_reader = input_readers.CoNLLToRNNGActionsReader( surface_vocab=value_vocab, nt_vocab=node_vocab, edg_vocab=edge_vocab) self.layer_dim = layer_dim self.src_data = list( self.src_reader.read_sents("examples/data/head.en")) self.trg_data = list( self.trg_reader.read_sents("examples/data/parse/head.en.conll")) self.loss_calculator = MLELoss() self.head_composer = composer.DyerHeadComposer( fwd_combinator=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), bwd_combinator=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), transform=AuxNonLinear(input_dim=layer_dim, aux_input_dim=layer_dim, output_dim=layer_dim)) self.model = DefaultTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=len(value_vocab)), encoder=IdentitySeqTransducer(), attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), decoder=RNNGDecoder( input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), bridge=NoBridge(dec_dim=layer_dim, dec_layers=1), graph_reader=self.trg_reader, head_composer=self.head_composer)) event_trigger.set_train(True) my_batcher = batchers.TrgBatcher(batch_size=1) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)
def assert_single_loss_equals_batch_loss(self, model, pad_src_to_multiple=1): """ Tests whether single loss equals batch loss. Truncating src / trg sents to same length so no masking is necessary """ batch_size = 5 src_sents = self.src_data[:batch_size] src_min = min([x.sent_len() for x in src_sents]) src_sents_trunc = [s.words[:src_min] for s in src_sents] for single_sent in src_sents_trunc: single_sent[src_min - 1] = Vocab.ES while len(single_sent) % pad_src_to_multiple != 0: single_sent.append(Vocab.ES) trg_sents = self.trg_data[:batch_size] trg_min = min([x.sent_len() for x in trg_sents]) trg_sents_trunc = [s.words[:trg_min] for s in trg_sents] for single_sent in trg_sents_trunc: single_sent[trg_min - 1] = Vocab.ES src_sents_trunc = [ sent.SimpleSentence(words=s) for s in src_sents_trunc ] trg_sents_trunc = [ sent.SimpleSentence(words=s) for s in trg_sents_trunc ] single_loss = 0.0 for sent_id in range(batch_size): tt.reset_graph() train_loss = MLELoss().calc_loss( model=model, src=src_sents_trunc[sent_id], trg=trg_sents_trunc[sent_id]).value() single_loss += train_loss[0] tt.reset_graph() batched_loss = MLELoss().calc_loss( model=model, src=mark_as_batch(src_sents_trunc), trg=mark_as_batch(trg_sents_trunc)).value() self.assertAlmostEqual(single_loss, np.sum(batched_loss), places=4)
def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 4 xnmt.events.clear() ParamManager.init_param_col() self.segment_composer = SumComposer() self.src_reader = CharFromWordTextReader(vocab=Vocab( vocab_file="examples/data/head.ja.charvocab")) self.trg_reader = PlainTextReader(vocab=Vocab( vocab_file="examples/data/head.en.vocab")) self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5) self.segmenting_encoder = SegmentingSeqTransducer( segment_composer=self.segment_composer, final_transducer=BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), ) self.model = DefaultTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), encoder=self.segmenting_encoder, attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), decoder=AutoRegressiveDecoder( input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="decoder"), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), scorer=Softmax(vocab_size=100, input_dim=layer_dim), embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) event_trigger.set_train(True) self.layer_dim = layer_dim self.src_data = list( self.model.src_reader.read_sents("examples/data/head.ja")) self.trg_data = list( self.model.trg_reader.read_sents("examples/data/head.en")) my_batcher = batchers.TrgBatcher(batch_size=3) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)
def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 32 xnmt.events.clear() ParamManager.init_param_col() self.src_reader = PlainTextReader(vocab=Vocab( vocab_file="test/data/head.ja.vocab")) self.trg_reader = PlainTextReader(vocab=Vocab( vocab_file="test/data/head.en.vocab")) self.layer_dim = layer_dim self.src_data = list(self.src_reader.read_sents("test/data/head.ja")) self.trg_data = list(self.trg_reader.read_sents("test/data/head.en")) self.input_vocab_size = len(self.src_reader.vocab.i2w) self.output_vocab_size = len(self.trg_reader.vocab.i2w) self.loss_calculator = MLELoss() self.model = SimultaneousTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=self.input_vocab_size), encoder=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), decoder=AutoRegressiveDecoder( input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="decoder"), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), scorer=Softmax(vocab_size=self.output_vocab_size, input_dim=layer_dim), embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=self.output_vocab_size), bridge=NoBridge(dec_dim=layer_dim, dec_layers=1)), ) event_trigger.set_train(True) my_batcher = batchers.TrgBatcher(batch_size=3) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)
def test_overfitting(self): layer_dim = 16 batcher = SrcBatcher(batch_size=10, break_ties_randomly=False) train_args = {} train_args['src_file'] = "examples/data/head.ja" train_args['trg_file'] = "examples/data/head.en" train_args['loss_calculator'] = MLELoss() train_args['model'] = DefaultTranslator( src_reader=PlainTextReader(vocab=Vocab( vocab_file="examples/data/head.ja.vocab")), trg_reader=PlainTextReader(vocab=Vocab( vocab_file="examples/data/head.en.vocab")), src_embedder=LookupEmbedder(vocab_size=100, emb_dim=layer_dim), encoder=BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), decoder=AutoRegressiveDecoder( input_dim=layer_dim, embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100), rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="model.decoder.rnn"), transform=NonLinear(input_dim=layer_dim * 2, output_dim=layer_dim), scorer=Softmax(input_dim=layer_dim, vocab_size=100), bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) train_args['dev_tasks'] = [ LossEvalTask(model=train_args['model'], src_file="examples/data/head.ja", ref_file="examples/data/head.en", batcher=batcher) ] train_args['run_for_epochs'] = 1 train_args['trainer'] = AdamTrainer(alpha=0.1) train_args['batcher'] = batcher training_regimen = regimens.SimpleTrainingRegimen(**train_args)
def calc_loss_single_batch(self): loss = MLELoss().calc_loss(self.model, self.src[0], self.trg[0]) reinforce_loss = event_trigger.calc_additional_loss(self.trg[0], self.model, loss) return loss, reinforce_loss
def test_train_nll(self): event_trigger.set_train(True) mle_loss = MLELoss() mle_loss.calc_loss(self.model, self.src[0], self.trg[0])