Пример #1
0
 def test_dict_equiv(self):
     x = OrderedDict()
     x['a'] = 3
     x['b'] = np.array([1, 2, 3])
     y = OrderedDict()
     y['b'] = np.array([1.0, 2.0, 3.0])
     y['a'] = 3
     self.assertTrue(utils.dict_equiv(x, y))  # two nparrays are equal
     y['b'] = [1, 2, 3]  # np.array not the same as a list
     self.assertTrue(utils.dict_equiv(x, y))  # nparray == list
     x['b'] = [1.0, 2.0, 3.0]
     self.assertTrue(utils.dict_equiv(x, y))  # list vs. list
     x['c'] = None
     self.assertFalse(utils.dict_equiv(x, y))  # new key in x
     x['c'] = np.nan
     y['c'] = np.nan
     self.assertTrue(utils.dict_equiv(x, y))  # as intended, nan is nan
     x['c'] = np.inf
     y['c'] = np.inf
     self.assertTrue(utils.dict_equiv(x, y))  # inf == inf
     y = dict(y)
     self.assertTrue(utils.dict_equiv(
         x, y))  # different dictionary types are fine
     y['b'] = 3 * np.arange(3)
     self.assertFalse(utils.dict_equiv(x,
                                       y))  # not equal when arrays differ
Пример #2
0
 def assertDatasetIdentical(self, d1, d2):
     # this method is functionally equivalent to `assert d1.identical(d2)`,
     # but it checks each aspect of equality separately for easier debugging
     assert utils.dict_equiv(d1.attrs, d2.attrs), (d1.attrs, d2.attrs)
     self.assertEqual(sorted(d1.vars, key=str), sorted(d2.vars, key=str))
     self.assertEqual(sorted(d1.coords, key=str), sorted(d2.coords,
                                                         key=str))
     for k in d1:
         v1 = d1._arrays[k]
         v2 = d2._arrays[k]
         self.assertVariableIdentical(v1, v2)
Пример #3
0
 def assertDatasetIdentical(self, d1, d2):
     # this method is functionally equivalent to `assert d1.identical(d2)`,
     # but it checks each aspect of equality separately for easier debugging
     assert utils.dict_equiv(d1.attrs, d2.attrs), (d1.attrs, d2.attrs)
     self.assertEqual(sorted(d1.vars, key=str),
                      sorted(d2.vars, key=str))
     self.assertEqual(sorted(d1.coords, key=str),
                      sorted(d2.coords, key=str))
     for k in d1:
         v1 = d1._arrays[k]
         v2 = d2._arrays[k]
         self.assertVariableIdentical(v1, v2)
Пример #4
0
 def test_dict_equiv(self):
     x = OrderedDict()
     x['a'] = 3
     x['b'] = np.array([1, 2, 3])
     y = OrderedDict()
     y['b'] = np.array([1.0, 2.0, 3.0])
     y['a'] = 3
     self.assertTrue(utils.dict_equiv(x, y)) # two nparrays are equal
     y['b'] = [1, 2, 3] # np.array not the same as a list
     self.assertTrue(utils.dict_equiv(x, y)) # nparray == list
     x['b'] = [1.0, 2.0, 3.0]
     self.assertTrue(utils.dict_equiv(x, y)) # list vs. list
     x['c'] = None
     self.assertFalse(utils.dict_equiv(x, y)) # new key in x
     x['c'] = np.nan
     y['c'] = np.nan
     self.assertTrue(utils.dict_equiv(x, y)) # as intended, nan is nan
     x['c'] = np.inf
     y['c'] = np.inf
     self.assertTrue(utils.dict_equiv(x, y)) # inf == inf
     y = dict(y)
     self.assertTrue(utils.dict_equiv(x, y)) # different dictionary types are fine
     y['b'] = 3 * np.arange(3)
     self.assertFalse(utils.dict_equiv(x, y)) # not equal when arrays differ