Пример #1
0
    def _train_model(self, train_set, train_labels, validation_set,
                     validation_labels):
        """ Train the model.
        :param train_set: training set
        :param train_labels: training labels
        :param validation_set: validation set
        :param validation_labels: validation labels
        :return: self
        """

        for i in range(self.num_epochs):

            shuff = zip(train_set, train_labels)
            np.random.shuffle(shuff)

            batches = [
                _ for _ in utilities.gen_batches(zip(train_set, train_labels),
                                                 self.batch_size)
            ]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(self.train_step,
                                    feed_dict={
                                        self.input_data: x_batch,
                                        self.input_labels: y_batch
                                    })

            if validation_set is not None:
                feed = {
                    self.input_data: validation_set,
                    self.input_labels: validation_labels
                }
                self._run_supervised_validation_error_and_summaries(i, feed)
Пример #2
0
    def _run_train_step(self, train_X):
        """Run a training step.

        A training step is made by randomly corrupting the training set,
        randomly shuffling it,  divide it into batches and run the optimizer
        for each batch.

        Parameters
        ----------

        train_X : array_like
            Training data, shape (num_samples, num_features).

        Returns
        -------

        self
        """
        x_corrupted = utilities.corrupt_input(
            train_X, self.tf_session, self.corr_type, self.corr_frac)

        shuff = list(zip(train_X, x_corrupted))
        np.random.shuffle(shuff)

        batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)]

        for batch in batches:
            x_batch, x_corr_batch = zip(*batch)
            tr_feed = {self.input_data_orig: x_batch,
                       self.input_data: x_corr_batch}
            self.tf_session.run(self.train_step, feed_dict=tr_feed)
    def _train_model(self, train_set, train_ref, validation_set, validation_ref):
        """ Train the model.
        :param train_set: training set
        :param train_ref: training reference data
        :param validation_set: validation set
        :param validation_ref: validation reference data
        :return: self
        """

        shuff = zip(train_set, train_ref)

        for i in range(self.num_epochs):

            np.random.shuffle(shuff)
            batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(self.train_step, feed_dict={self.input_data: x_batch,
                                                                self.input_labels: y_batch,
                                                                self.keep_prob: self.dropout})

            if validation_set is not None:
                feed = {self.input_data: validation_set, self.input_labels: validation_ref, self.keep_prob: 1}
                self._run_validation_error_and_summaries(i, feed)
Пример #4
0
    def _train_model(self, train_set, train_ref, validation_set,
                     validation_ref):
        """Train the model.

        :param train_set: training set
        :param train_ref: training reference data
        :param validation_set: validation set
        :param validation_ref: validation reference data
        :return: self
        """
        shuff = zip(train_set, train_ref)

        for i in range(self.num_epochs):

            np.random.shuffle(shuff)
            batches = [
                _ for _ in utilities.gen_batches(shuff, self.batch_size)
            ]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(self.train_step,
                                    feed_dict={
                                        self.input_data: x_batch,
                                        self.input_labels: y_batch,
                                        self.keep_prob: self.dropout
                                    })

            if validation_set is not None:
                feed = {
                    self.input_data: validation_set,
                    self.input_labels: validation_ref,
                    self.keep_prob: 1
                }
                self._run_validation_error_and_summaries(i, feed)
Пример #5
0
    def _train_model(self, train_set, train_labels,
                     validation_set, validation_labels):
        """Train the model.

        :param train_set: training set
        :param train_labels: training labels
        :param validation_set: validation set
        :param validation_labels: validation labels
        :return: self
        """
        shuff = list(zip(train_set, train_labels))

        pbar = tqdm(range(self.num_epochs))
        for i in pbar:

            np.random.shuffle(shuff)
            batches = [_ for _ in utilities.gen_batches(
                shuff, self.batch_size)]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(
                    self.train_step, feed_dict={
                        self.input_data: x_batch,
                        self.input_labels: y_batch,
                        self.keep_prob: self.dropout})

            if validation_set is not None:
                feed = {self.input_data: validation_set,
                        self.input_labels: validation_labels,
                        self.keep_prob: 1}
                acc = tf_utils.run_summaries(
                    self.tf_session, self.tf_merged_summaries,
                    self.tf_summary_writer, i, feed, self.accuracy)
                pbar.set_description("Accuracy: %s" % (acc))
    def _train_model(self, train_set, train_ref,
                     validation_set, validation_ref):
        """Train the model.

        :param train_set: training set
        :param train_ref: training reference data
        :param validation_set: validation set
        :param validation_ref: validation reference data
        :return: self
        """
        shuff = list(zip(train_set, train_ref))

        pbar = tqdm(range(self.num_epochs))
        for i in pbar:

            np.random.shuffle(shuff)
            batches = [_ for _ in utilities.gen_batches(
                shuff, self.batch_size)]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(
                    self.train_step,
                    feed_dict={self.input_data: x_batch,
                               self.input_labels: y_batch,
                               self.keep_prob: self.dropout})

            if validation_set is not None:
                feed = {self.input_data: validation_set,
                        self.input_labels: validation_ref,
                        self.keep_prob: 1}
                err = tf_utils.run_summaries(
                    self.tf_session, self.tf_merged_summaries,
                    self.tf_summary_writer, i, feed, self.cost)
                pbar.set_description("Reconstruction loss: %s" % (err))
    def _train_model(self, train_set, train_labels,
                     validation_set, validation_labels):
        """Train the model.

        :param train_set: training set
        :param train_labels: training labels
        :param validation_set: validation set
        :param validation_labels: validation labels
        :return: self
        """
        pbar = tqdm(range(self.num_epochs))
        for i in pbar:

            shuff = list(zip(train_set, train_labels))
            np.random.shuffle(shuff)

            batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(
                    self.train_step,
                    feed_dict={self.input_data: x_batch,
                               self.input_labels: y_batch})

            if validation_set is not None:
                feed = {self.input_data: validation_set,
                        self.input_labels: validation_labels}
                acc = tf_utils.run_summaries(
                    self.tf_session, self.tf_merged_summaries,
                    self.tf_summary_writer, i, feed, self.accuracy)
                pbar.set_description("Accuracy: %s" % (acc))
    def _train_model(self, train_set, train_labels,
                     validation_set, validation_labels):
        """Train the model.

        :param train_set: training set
        :param train_labels: training labels
        :param validation_set: validation set
        :param validation_labels: validation labels
        :return: self
        """
        for i in range(self.num_epochs):

            shuff = zip(train_set, train_labels)
            np.random.shuffle(shuff)

            batches = [_ for _ in utilities.gen_batches(
                zip(train_set, train_labels), self.batch_size)]

            for batch in batches:
                x_batch, y_batch = zip(*batch)
                self.tf_session.run(
                    self.train_step,
                    feed_dict={self.input_data: x_batch,
                               self.input_labels: y_batch})

            if validation_set is not None:
                feed = {self.input_data: validation_set,
                        self.input_labels: validation_labels}
                self._run_validation_error_and_summaries(i, feed)
Пример #9
0
    def _run_train_step(self, train_set):

        """ Run a training step. A training step is made by randomly shuffling the training set,
        divide into batches and run the variable update nodes for each batch.
        :param train_set: training set
        :return: self
        """

        np.random.shuffle(train_set)

        batches = [_ for _ in utilities.gen_batches(train_set, self.batch_size)]
        updates = [self.w_upd8, self.bh_upd8, self.bv_upd8]

        for batch in batches:
            self.tf_session.run(updates, feed_dict=self._create_feed_dict(batch))
    def _run_train_step(self, train_set):

        """ Run a training step. A training step is made by randomly corrupting the training set,
        randomly shuffling it,  divide it into batches and run the optimizer for each batch.
        :param train_set: training set
        :return: self
        """
        x_corrupted = self._corrupt_input(train_set)

        shuff = zip(train_set, x_corrupted)
        np.random.shuffle(shuff)

        batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)]

        for batch in batches:
            x_batch, x_corr_batch = zip(*batch)
            tr_feed = {self.input_data: x_batch, self.input_data_corr: x_corr_batch}
            self.tf_session.run(self.train_step, feed_dict=tr_feed)
Пример #11
0
    def _run_train_step(self, train_set):
        """ Run a training step. A training step is made by randomly corrupting the training set,
        randomly shuffling it,  divide it into batches and run the optimizer for each batch.
        :param train_set: training set
        :return: self
        """
        x_corrupted = self._corrupt_input(train_set)

        shuff = zip(train_set, x_corrupted)
        np.random.shuffle(shuff)

        batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)]

        for batch in batches:
            x_batch, x_corr_batch = zip(*batch)
            tr_feed = {
                self.input_data_orig: x_batch,
                self.input_data: x_corr_batch
            }
            self.tf_session.run(self.train_step, feed_dict=tr_feed)
    def _train_model(self, train_set, train_ref, validation_set,
                     validation_ref):
        """Train the model.

        :param train_set: training set
        :param train_ref: training reference data
        :param validation_set: validation set
        :param validation_ref: validation reference data
        :return: self
        """
        shuff = list(zip(train_set, train_ref))

        pbar = tqdm(list(range(self.num_epochs)))
        for i in pbar:

            np.random.shuffle(shuff)
            batches = [
                _ for _ in utilities.gen_batches(shuff, self.batch_size)
            ]

            for batch in batches:
                x_batch, y_batch = list(zip(*batch))
                self.tf_session.run(self.train_step,
                                    feed_dict={
                                        self.input_data: x_batch,
                                        self.input_labels: y_batch,
                                        self.keep_prob: self.dropout
                                    })

            if validation_set is not None:
                feed = {
                    self.input_data: validation_set,
                    self.input_labels: validation_ref,
                    self.keep_prob: 1
                }
                err = tf_utils.run_summaries(self.tf_session,
                                             self.tf_merged_summaries,
                                             self.tf_summary_writer, i, feed,
                                             self.cost)
                pbar.set_description("Reconstruction loss: %s" % (err))