Пример #1
0
def getMarketData():
    tickers = 'AAPL'
    financials = YahooFinancials(tickers)

    #	company_stock_price = financials.get_stock_price_data() #gets stock price information

    historical_stock_prices_data = financials.get_historical_price_data(
        '2015-11-21', '2020-11-21',
        'daily')  #gets historical daily stock price of company
    #	get_Div_data(historical_stock_prices_data[tickers])
    get_stock_price_data(historical_stock_prices_data[tickers])

    #	company_balance_sheet_data_qt = financials.get_financial_stmts('quarterly', 'balance') #get balance sheet
    #	company_income_statement_data_qt = financials.get_financial_stmts('quarterly', 'income') #get income statement

    company_key_statistics_data = financials.get_key_statistics_data(
    )  #includes profit margins, forward eps, yearly change etc.
    #	get_forward_pe(company_key_statistics_data[tickers])
    #	get_trailing_eps(company_key_statistics_data[tickers])
    #	get_foward_eps(company_key_statistics_data[tickers])
    #	get_ytdReturn(company_key_statistics_data[tickers])

    company_earnings_data = financials.get_stock_earnings_data(
    )  #historical eps only for 1 year span
    #	get_earnings_data(company_earnings_data[tickers])

    company_dividend_yield = financials.get_dividend_yield(
    )  #current dividends yield
    company_dividend = financials.get_dividend_rate()  #current dividends rate
    company_avg_div_yield_1year = financials.get_annual_avg_div_yield(
    )  #average 1 year div yield
    company_avg_div_yield_5year = financials.get_five_yr_avg_div_yield(
    )  #average 5 year div yield
    company_eps = financials.get_earnings_per_share()  #current eps
    company_pe = financials.get_pe_ratio()  #current pe ratio
    company_beta = financials.get_beta()  #current beta
    company_current_stock_price = financials.get_current_price(
    )  #current stock price

    company_revenue = financials.get_total_revenue()  #current company revenue
    company_operating_income = financials.get_operating_income(
    )  #current company operating income
    company_net_income = financials.get_net_income()  #current net income

    company_yearly_high = financials.get_yearly_high()  #get yearly high
    company_yearly_low = financials.get_yearly_low()  #get yearly low
    company_moving_50 = financials.get_50day_moving_avg(
    )  #50 day moving average of stock
    company_moving_200 = financials.get_200day_moving_avg(
    )  #200 day moving average of stock
Пример #2
0
def analyze_stock(pstock):

    days = 1000
    now = datetime.datetime.now()
    year_before = now - datetime.timedelta(days=days)

    stock = pstock.stock
    yf = YahooFinancials(stock.name)
    stock_analysis = StockAnalysis(yf)

    # update important fields
    stock.last_price = convert_number(yf.get_current_price())
    stock.price_sales_ratio = convert_number(yf.get_price_to_sales())
    stock.dividend_yield = convert_number(yf.get_annual_avg_div_yield())

    # historical_prices = yf.get_historical_price_data(stock.name,
    #     year_before.strftime('%Y%m%d'), now.strftime('%Y%m%d'), 'daily')

    #[['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Clos']
    # history = []
    # historical_prices = historical_prices[1:]
    # has_history = True
    # for p in historical_prices:
    #     # error index out of range here
    #     if(len(p) == 1):
    #         has_history = False
    #         break
    #     close_v = float(p[4])
    #     date = datetime.datetime.strptime(p[0],'%Y-%m-%d')
    #     history.append({"date":date, "close_value":close_v})

    # price_trends = []
    # volatilities = [
    #     {'days':100},
    #     {'days':300},
    #     {'days':600},
    # ]
    # if has_history:
    #     # today first
    #     history = sorted(history, key=lambda p: p['date'])
    #     assert history[1]['date'] > history[0]['date']

    #     for v in volatilities:
    #         if len(history) < v['days']:
    #             v['days'] = len(history)

    #         v['volatility'] = round(calculate_historical_volatility(history[-v['days']:]), 2)
    #         v['start_date'] = history[-v['days']:][0]['date']

    #     stock_analysis.volatility = volatilities[1]['volatility']
    #     stock.volatility = stock_analysis.volatility

    #     start = 0
    #     interval = int(len(history) / 5.0)
    #     while len(history) > (start + interval) and interval > 0:
    #         trend = calculate_historical_price_trend(history[start:start+interval])
    #         price_trends.append(trend)
    #         start = start + interval
    #         #if len(history) < (start + interval):
    #         #    interval = len(history) - start - 1

    #     trend = calculate_historical_price_trend(history)
    #     price_trends.append(trend)
    #     stock_analysis.trend = trend

    stock.value_score = stock_analysis.value_score_analysis()
    stock.save()

    return {
        #'price_trends':price_trends,
        'stock':stock,
        #'volatilities':volatilities,
        'stock_analysis':stock_analysis,
        'days':days,
        #'history': history
    }