class Player(object): def __init__(self, library: Library, strategy: t.Type[Strategy]): self._library = library self._strategy = strategy self.lands = 0 self._hand = Multiset() #type: Multiset[t.Type[Card]] @property def hand(self) -> Multiset[t.Type[Card]]: return self._hand def turn(self, game: Game) -> Player: self._strategy.turn(game) return self def draw(self) -> Player: card = self._library.draw() if card: self._hand.add(card) return self def draw_hand(self) -> Player: for _ in range(7): self.draw() return self
def _generate(self) -> None: self.accept() expansions = Multiset() for child in self.children(): if isinstance(child, ExpansionSelectorBox): expansions.add( Context.db.expansions[ child.expansion_selector.currentText() ], int(child.amounter.text()), ) self._generateable.pool_generated.emit(expansions)
def scale(self, amount: int) -> BaseCube: current_size = len(self) if not current_size: raise ValueError('cannot scale empty cube') remaining = amount - current_size if remaining <= 0: return self factor = (amount / current_size) - 1 additionals: Multiset[Cubeable] = Multiset() factored = OrderedDict() for cubeable, multiplicity in self.cubeables.items(): amount = multiplicity * factor whole = int(amount) if whole: additionals.add(cubeable, whole) remainder = amount - whole if remainder: factored[cubeable] = remainder s = sum(factored.values()) return self + self.__class__(additionals) + ( self.__class__( choice( list(factored.keys()), remaining - len(additionals), replace = False, p = [v / s for v in factored.values()], ) ) if s else self.__class__() )
def serialize(self, deck: Deck) -> t.AnyStr: root = ElementTree.Element('cockatrice_deck', {'version': '1'}) ElementTree.SubElement(root, 'decknames') ElementTree.SubElement(root, 'comments') maindeck = ElementTree.SubElement(root, 'zone', {'name': 'main'}) sideboard = ElementTree.SubElement(root, 'zone', {'name': 'side'}) for element, printings in ((maindeck, deck.maindeck), (sideboard, deck.sideboard)): for cardboard, multiplicity in Multiset( printing.cardboard for printing in printings).items(): ElementTree.SubElement( element, 'card', { 'number': str(multiplicity), 'price': '0', 'name': (cardboard.front_card.name if cardboard.layout == Layout.FLIP else ' // '.join( card.name for card in cardboard.front_cards)), }, ) with io.BytesIO() as f: ElementTree.ElementTree(root).write(f, encoding='utf-8', xml_declaration=True) return f.getvalue()
def check(cls, updater: CubeUpdater) -> t.Optional[ReportNotification]: groups = defaultdict(lambda: Multiset()) for node in updater.new_nodes: for group in node.groups: groups[group].add(node) under_populated_groups = { group: nodes for group, nodes in groups.items() if len(nodes) <= 1 } if not under_populated_groups: return None return cls( { key: under_populated_groups[key] for key in under_populated_groups.keys() - updater.group_map.groups.keys() }, { key: under_populated_groups[key] for key in under_populated_groups.keys() & updater.group_map.groups.keys() }, )
def __init__(self, player: Player, on_the_play: bool = False): self._player = player self._damage_dealt = 0 self._on_the_play = on_the_play self._turns = 0 self._battlefield = Multiset() #type: Multiset[t.Type[Card]]
def _block_from_group(self, group: Group[Printing], sideboard: bool = False) -> str: printings = Multiset(group.items) return '// {} ({})\n{}'.format( (self._sideboard_indicator if sideboard else '') + group.name, len(printings), self._printings_to_lines(printings, sideboard=sideboard), )
def duplicate_selected(self) -> None: cards = self._scene.selectedItems() if cards: self._undo_stack.push( self._scene.get_cube_modification( CubeDeltaOperation( Multiset(card.cubeable for card in cards).elements()), cards[0].pos() + QPoint(1, 1), ))
def deserialize(self, s: t.AnyStr) -> Deck: maindeck = Multiset() sideboard = Multiset() pattern = re.compile('({}\s+)?(\d+) \[([A-Z0-9]*)\] (.*?)\s*$'.format( self._sideboard_indicator.rstrip())) for ln in s.split('\n'): m = pattern.match(ln) if m: is_sideboard, qty, expansion, name = m.groups() (sideboard if is_sideboard else maindeck).add( self._get_printing(name.replace('/', '//'), expansion), int(qty), ) return Deck( maindeck, sideboard, )
def check(cls, updater: CubeUpdater) -> t.Optional[ReportNotification]: unknown_map = defaultdict(lambda: Multiset()) for node in updater.new_nodes: for group in node.groups: if not group in updater.new_groups.groups: unknown_map[group].add(node) if not unknown_map: return None return cls(unknown_map)
class VerboseCubePatch(Serializeable): def __init__(self, changes: t.Iterable[CubeChange]): self._changes = Multiset(changes) @property def changes(self) -> Multiset[CubeChange]: return self._changes def serialize(self) -> serialization_model: return { 'changes': [( change.serialize(), multiplicity, change.__class__.__name__, ) for change, multiplicity in self._changes.items()] } @classmethod def deserialize(cls, value: serialization_model, inflator: Inflator) -> VerboseCubePatch: return cls({ CUBE_CHANGE_MAP[klass].deserialize(change, inflator): multiplicity for change, multiplicity, klass in value['changes'] }) def __hash__(self) -> int: return hash(self._changes) def __eq__(self, other) -> bool: return (isinstance(other, self.__class__) and self._changes == other._changes) def __repr__(self) -> str: return '{}({})'.format( self.__class__.__name__, { change: multiplicity for change, multiplicity in self._changes.items() }, )
def validate(self, deck: Deck) -> t.List[str]: errors = [] for cardboard, multiplicity in Multiset( printing.cardboard for printing in deck.seventy_five if not (self._ignore_basics and BASIC in printing.cardboard.front_card.type_line)).items(): if multiplicity > self._max_duplicates: errors.append( 'amount of {} ({}) greater than maximum allowed amount of single cardboard ({})' .format( cardboard.name, multiplicity, self._max_duplicates, )) return errors
def generate_booster(self) -> Booster[T]: slots = Multiset(slot.sample_slot() for slot in self.slots) printings = Multiset() for value, multiplicity in slots.items(): try: printings.update( multiset_sample( value, multiplicity, ) ) except ValueError: raise GenerateBoosterException('Not enough printings') return Booster(printings)
def groupify(self, items: t.Iterable[T]) -> Grouping[T]: items = Multiset(items) categories = [] for category in self._categories: matches = FrozenMultiset(category.criteria.matches(items, self._extraction_strategy)) if not matches: continue categories.append(self._group_type()(category.name, matches)) items -= matches if items and self._include_others: categories.append(self._group_type()('Others', FrozenMultiset(items))) return Grouping(self._name, categories)
def __init__(self, library: Library, strategy: t.Type[Strategy]): self._library = library self._strategy = strategy self.lands = 0 self._hand = Multiset() #type: Multiset[t.Type[Card]]
def as_verbose(self, meta_cube: MetaCube) -> VerboseCubePatch: group_updates = set() for group, new_weight in self.group_map_delta_operation.groups.items(): current_weight = meta_cube.group_map.groups.get(group) if current_weight is None: group_updates.add(AddGroup(group, new_weight)) else: if -new_weight == current_weight: group_updates.add(RemoveGroup( group, new_weight, )) else: group_updates.add( GroupWeightChange( group, current_weight, current_weight + new_weight, )) new_laps: Multiset[Lap] = Multiset({ lap: multiplicity for lap, multiplicity in self._cube_delta_operation.laps if multiplicity > 0 }) removed_laps: Multiset[Lap] = Multiset({ lap: -multiplicity for lap, multiplicity in self._cube_delta_operation.laps if multiplicity < 0 }) new_printings: Multiset[Printing] = Multiset({ printing: multiplicity for printing, multiplicity in self._cube_delta_operation.printings if multiplicity > 0 }) removed_printings: Multiset[Printing] = Multiset({ printing: -multiplicity for printing, multiplicity in self._cube_delta_operation.printings if multiplicity < 0 }) new_nodes: Multiset[ConstrainedNode] = Multiset({ node: multiplicity for node, multiplicity in self._node_delta_operation.nodes.items() if multiplicity > 0 }) removed_nodes: Multiset[ConstrainedNode] = Multiset({ node: -multiplicity for node, multiplicity in self._node_delta_operation.nodes.items() if multiplicity < 0 }) new_printings_cardboard_map = defaultdict(lambda: []) for printing in new_printings: new_printings_cardboard_map[printing.cardboard].append(printing) removed_printings_cardboard_map = defaultdict(lambda: []) for printing in removed_printings: removed_printings_cardboard_map[printing.cardboard].append( printing) for printings in itertools.chain( new_printings_cardboard_map.values(), removed_printings_cardboard_map.values(), ): printings.sort(key=lambda p: p.expansion.code) printing_changes: Multiset[t.Tuple[Printing, Printing]] = Multiset() for cardboard in new_printings_cardboard_map.keys( ) & removed_printings_cardboard_map.keys(): new = new_printings_cardboard_map[cardboard] removed = removed_printings_cardboard_map[cardboard] while new and removed: _new = new.pop() _removed = removed.pop() printing_changes.add((_removed, _new)) new_printings.remove(_new, 1) removed_printings.remove(_removed, 1) new_unnested_nodes = sorted( (node for node in new_nodes if all( isinstance(child, Printing) for child in node.node.children)), key=lambda node: len(node.node.children), reverse=True, ) printings_moved_to_nodes = Multiset() for node in new_unnested_nodes: if node.node.children <= removed_printings: printings_moved_to_nodes.add(( node.node.children, node, )) removed_printings -= node.node.children for _, node in printings_moved_to_nodes: new_nodes.remove(node, 1) removed_unnested_nodes = sorted( (node for node in removed_nodes if all( isinstance(child, Printing) for child in node.node.children)), key=lambda node: len(node.node.children), reverse=True, ) nodes_moved_to_printings = Multiset() for node in removed_unnested_nodes: if node.node.children <= new_printings: nodes_moved_to_printings.add(( node.node.children, node, )) new_printings -= node.node.children for _, node in nodes_moved_to_printings: removed_nodes.remove(node, 1) removed_nodes_by_node: t.Dict[PrintingNode, t.List[ConstrainedNode]] = {} for node in removed_nodes: try: removed_nodes_by_node[node.node].append(node) except KeyError: removed_nodes_by_node[node.node] = [node] nodes_to_traps: Multiset[t.Tuple[Trap, ConstrainedNode]] = Multiset() for lap in new_laps: if isinstance(lap, Trap) and lap.node in removed_nodes_by_node: nodes_to_traps.add( (lap, removed_nodes_by_node[lap.node].pop())) if not removed_nodes_by_node[lap.node]: del removed_nodes_by_node[lap.node] for trap, node in nodes_to_traps: new_laps.remove(trap, 1) removed_nodes.remove(node, 1) new_nodes_by_node: t.Dict[PrintingNode, t.List[ConstrainedNode]] = {} for node in new_nodes: try: new_nodes_by_node[node.node].append(node) except KeyError: new_nodes_by_node[node.node] = [node] traps_to_nodes: Multiset[t.Tuple[Trap, ConstrainedNode]] = Multiset() for lap in removed_laps: if isinstance(lap, Trap) and lap.node in new_nodes_by_node: traps_to_nodes.add((lap, new_nodes_by_node[lap.node].pop())) if not new_nodes_by_node[lap.node]: del new_nodes_by_node[lap.node] for trap, node in traps_to_nodes: removed_laps.remove(trap, 1) new_nodes.remove(node, 1) altered_nodes = [] for new_node in new_nodes: for removed_node in copy.copy(removed_nodes): if new_node.node == removed_node.node: removed_nodes.remove(removed_node, 1) altered_nodes.append([removed_node, new_node]) break for _, new_node in altered_nodes: new_nodes.remove(new_node, 1) return VerboseCubePatch( itertools.chain( (AddInfinite(cardboard) for cardboard in self._infinites_delta_operation.added), (RemoveInfinite(cardboard) for cardboard in self._infinites_delta_operation.removed), group_updates, (PrintingChange(before, after) for before, after in printing_changes), (NewCubeable(lap) for lap in new_laps), (RemovedCubeable(lap) for lap in removed_laps), (NewCubeable(printing) for printing in new_printings), (RemovedCubeable(printing) for printing in removed_printings), (NewNode(node) for node in new_nodes), (RemovedNode(node) for node in removed_nodes), (PrintingsToNode(printings, node) for printings, node in printings_moved_to_nodes), (NodeToPrintings(node, printings) for printings, node in nodes_moved_to_printings), (NodeToTrap(trap, node) for trap, node in nodes_to_traps), (TrapToNode(trap, node) for trap, node in traps_to_nodes), (AlteredNode(before, after) for before, after in altered_nodes)))
def __init__(self, changes: t.Iterable[CubeChange]): self._changes = Multiset(changes)
def _set_pick_point(self, pick_point: t.Optional[PickPoint], new: bool) -> None: if not new: return self._update_pick_meta() self._booster_view.cube_image_view.cancel_drags() if pick_point is None: self._clear() return release_id = (pick_point.round.booster_specification.release.id if isinstance(pick_point.round.booster_specification, CubeBoosterSpecification) else []) previous_picks = ( self._draft_model.draft_client.history.preceding_picks(pick_point) if Context.settings.value('ghost_cards', True, bool) else None) ghost_cards: t.List[PhysicalCard] = [ PhysicalCard.from_cubeable( cubeable, release_id=release_id, values={'ghost': True}) for cubeable in previous_picks[0].booster.cubeables - pick_point.booster.cubeables ] if previous_picks else [] cards = [ PhysicalCard.from_cubeable(cubeable, release_id=release_id) for cubeable in pick_point.booster.cubeables ] + ghost_cards if self._draft_model.draft_client.rating_map is not None and settings.SHOW_PICKABLE_RATINGS.get_value( ): for card in cards: rating = self._draft_model.draft_client.rating_map.get( cardboardize(card.cubeable)) if rating is not None: card.set_info_text(str(rating.rating)) card.values['rating'] = rating.rating self._booster_scene.get_cube_modification( add=cards, remove=self._booster_scene.items(), closed_operation=True, ).redo() self._booster_scene.get_default_sort().redo() for ghost_card in ghost_cards: ghost_card.add_highlight(GHOST_COLOR) ghost_card.values['ghost'] = True picks = Multiset() burns = Multiset() for _pick_point in previous_picks + ([pick_point] if pick_point.pick else []): if isinstance(_pick_point.pick, BurnPick): picks.add(_pick_point.pick.pick) if _pick_point.pick.burn is not None: burns.add(_pick_point.pick.burn) else: picks.add(_pick_point.pick.cubeable) if pick_point == self._draft_model.draft_client.history.current: if self._draft_model.pick is not None: picks.add(self._draft_model.pick.cubeable) if self._draft_model.burn is not None: burns.add(self._draft_model.burn.cubeable) self._highlight_picks_burns(cards, picks, burns)
def check_deck_subset_pool( pool: Cube, deck: BaseMultiset[Printing], exempt_cardboards: t.AbstractSet[Cardboard] = frozenset(), *, strict: bool = True, ) -> Errors: """ I am to lazy to make this work properly for cases that aren't required yet. This does not work properly if copies of the same printing are present in both tickets and traps. This also does not work properly if tickets have overlap (although it is not even really well defined how this should work) """ if not strict: pool = pool.as_cardboards deck = FrozenMultiset(p.cardboard for p in deck) printings = Multiset(pool.models) anys: Multiset[AnyNode] = Multiset() for child in itertools.chain(*(trap.node.flattened for trap in pool.traps)): if isinstance(child, NodeAny): anys.add(child) else: printings.add(child) ticket_printings = set(itertools.chain(*pool.tickets)) unaccounted_printings = Multiset({ printing: multiplicity for printing, multiplicity in deck.items() if ( (printing.cardboard not in exempt_cardboards) if strict else (printing not in exempt_cardboards)) }) - printings printings_in_tickets = Multiset() printing_to_anys = defaultdict(list) flattened_anys = { _any: FrozenMultiset(_any.flattened_options) for _any in anys.distinct_elements() } for _any, options in flattened_anys.items(): for option in options: for printing in option: printing_to_anys[printing].append(_any) any_potential_option_uses = defaultdict(Multiset) for unaccounted_printing in unaccounted_printings: _anys = printing_to_anys.get(unaccounted_printing) if not _anys: if unaccounted_printing in ticket_printings: printings_in_tickets.add(unaccounted_printing) continue return Errors([f'Pool does not contain {unaccounted_printing}']) for _any in _anys: for option in flattened_anys[_any]: if unaccounted_printing in option: any_potential_option_uses[_any].add(option) uncontested_options = Multiset() contested_options = [] for _any, options in any_potential_option_uses.items(): for _ in range(anys.elements().get(_any, 0)): if not options: continue if len(options) == 1: uncontested_options.update(options.__iter__().__next__()) else: contested_options.append(flattened_anys[_any]) contested_printings = Multiset( printing for printing in unaccounted_printings - uncontested_options if not printing in printings_in_tickets) combination_printings = Multiset() if contested_options: solution_found = False for combination in itertools.product(*contested_options): combination_printings = Multiset(itertools.chain(*combination)) if contested_printings <= combination_printings: solution_found = True break else: solution_found = True if not solution_found: return Errors(['No suitable combination of any choices']) unaccounted_printings -= combination_printings + uncontested_options if not unaccounted_printings: return Errors() printings_to_tickets = defaultdict(set) for ticket in pool.tickets: for printing in ticket: printings_to_tickets[printing].add(ticket) tickets_to_printings = defaultdict(list) for printing, multiplicity in unaccounted_printings.items(): for ticket in printings_to_tickets[printing]: tickets_to_printings[ticket].append(printing) uncontested_tickets = [] contested_tickets_printings = [] contested_tickets_tickets = [] for ticket, printings in tickets_to_printings.items(): if len(printings) == 1: uncontested_tickets.append((ticket, printings[0])) else: contested_tickets_printings.append(printings) contested_tickets_tickets.append(ticket) for ticket, printing in uncontested_tickets: if _amount_printing_to_required_tickets( unaccounted_printings[printing]) > pool.tickets[ticket]: return Errors([f'Not enough tickets to pay for {printing}']) if contested_tickets_printings: solution_found = False for combination in itertools.product(*contested_tickets_printings): _printings_to_tickets = defaultdict(list) for ticket, printing in zip(contested_tickets_tickets, combination): _printings_to_tickets[printing].append(ticket) for printing, tickets in _printings_to_tickets.items(): if _amount_printing_to_required_tickets( unaccounted_printings[printing]) <= sum( pool.tickets[ticket] for ticket in tickets): solution_found = True break if solution_found: break else: solution_found = True if not solution_found: return Errors(['No suitable combination of tickets']) return Errors()