Пример #1
0
def create_s3_configuration(
        access_server_port: int) -> storage.S3Configurations:
    return storage.S3Configurations(
        bucket="yogadl-test",
        bucket_directory_path="integration-tests",
        url=f"ws://localhost:{access_server_port}",
        local_cache_dir="/tmp/",
    )
Пример #2
0
    def _configure_storage(self) -> None:
        session_config = None  # type: Optional[tf.compat.v1.ConfigProto]
        if self._hvd_config.use:
            # For multi-GPU training, we map processes to individual GPUs. TF requires
            # that for each instantiation of `tf.Session`, the process is mapped
            # to the same GPU.
            session_config = tf.compat.v1.ConfigProto()
            session_config.gpu_options.visible_device_list = str(
                hvd.local_rank())

        scheme = "wss" if self._env.use_tls else "ws"
        rw_coordinator_url = (
            f"{scheme}://{self._env.master_addr}:{self._env.master_port}/ws/data-layer/"
        )
        data_layer_type = self._env.experiment_config.get_data_layer_type()

        if data_layer_type == StorageTypes.SHARED_FS.value:
            local_cache_dir_path = self._env.experiment_config[
                "data_layer"].get("container_storage_path")
            local_cache_path = init_container_storage_path(
                configured_storage_path=local_cache_dir_path)

            storage_config = storage.LFSConfigurations(
                storage_dir_path=str(local_cache_path))
            self._storage = storage.LFSStorage(
                storage_config, tensorflow_config=session_config)

        elif data_layer_type == StorageTypes.S3.value:
            local_cache_dir_path = self._env.experiment_config[
                "data_layer"].get("local_cache_container_path")
            local_cache_path = init_container_storage_path(
                configured_storage_path=local_cache_dir_path)

            storage_config = storage.S3Configurations(
                bucket=self._env.experiment_config["data_layer"]["bucket"],
                bucket_directory_path=self._env.experiment_config["data_layer"]
                ["bucket_directory_path"],
                url=rw_coordinator_url,
                local_cache_dir=str(local_cache_path),
                access_key=self._env.experiment_config["data_layer"].get(
                    "access_key"),
                secret_key=self._env.experiment_config["data_layer"].get(
                    "secret_key"),
                endpoint_url=self._env.experiment_config["data_layer"].get(
                    "endpoint_url"),
                coordinator_cert_file=self._env.master_cert_file,
                coordinator_cert_name=self._env.master_cert_name,
            )
            self._storage = storage.S3Storage(storage_config,
                                              tensorflow_config=session_config)

        elif data_layer_type == StorageTypes.GCS.value:
            local_cache_dir_path = self._env.experiment_config[
                "data_layer"].get("local_cache_container_path")
            local_cache_path = init_container_storage_path(
                configured_storage_path=local_cache_dir_path)
            storage_config = storage.GCSConfigurations(
                bucket=self._env.experiment_config["data_layer"]["bucket"],
                bucket_directory_path=self._env.experiment_config["data_layer"]
                ["bucket_directory_path"],
                url=rw_coordinator_url,
                local_cache_dir=str(local_cache_path),
                coordinator_cert_file=self._env.master_cert_file,
                coordinator_cert_name=self._env.master_cert_name,
            )
            self._storage = storage.GCSStorage(
                storage_config, tensorflow_config=session_config)

        else:
            raise AssertionError(
                "Please select a supported data_layer type. Supported types include: "
                f"{[i.value for i in StorageTypes]}")