def test_training_step(self): # Setup the DataModule data_path = 'data-bin' train_dataset = data_helper.get_dataset(data_root=data_path, mode='train') val_dataset = data_helper.get_dataset(data_root=data_path, mode='val') data_module = DetectionDataModule(train_dataset, val_dataset, batch_size=16) # Load model model = yolov5s() model.train() # Trainer trainer = pl.Trainer(max_epochs=1) trainer.fit(model, data_module)
def test_training_step(): # Setup the DataModule data_path = "data-bin" train_dataset = data_helper.get_dataset(data_root=data_path, mode="train") val_dataset = data_helper.get_dataset(data_root=data_path, mode="val") data_module = DetectionDataModule(train_dataset, val_dataset, batch_size=8) # Load model model = DefaultTask(arch="yolov5n") model = model.train() # Trainer trainer = pl.Trainer(max_epochs=1) trainer.fit(model, data_module)
def test_get_dataset(self): # Acquire the images and labels from the coco128 dataset train_dataset = data_helper.get_dataset(data_root='data-bin', mode='train') # Test the datasets image, target = next(iter(train_dataset)) self.assertIsInstance(image, Tensor) self.assertIsInstance(target, Dict)
def test_get_dataset(): # Acquire the images and labels from the coco128 dataset train_dataset = data_helper.get_dataset(data_root="data-bin", mode="train") # Test the datasets image, target = next(iter(train_dataset)) assert isinstance(image, Tensor) assert isinstance(target, dict)
def test_detection_data_module(self): # Setup the DataModule batch_size = 4 train_dataset = data_helper.get_dataset(data_root='data-bin', mode='train') data_module = DetectionDataModule(train_dataset, batch_size=batch_size) self.assertEqual(data_module.batch_size, batch_size) data_loader = data_module.train_dataloader(batch_size=batch_size) images, targets = next(iter(data_loader)) self.assertEqual(len(images), batch_size) self.assertIsInstance(images[0], Tensor) self.assertEqual(len(images[0]), 3) self.assertEqual(len(targets), batch_size) self.assertIsInstance(targets[0], Dict) self.assertIsInstance(targets[0]["image_id"], Tensor) self.assertIsInstance(targets[0]["boxes"], Tensor) self.assertIsInstance(targets[0]["labels"], Tensor)
def test_detection_data_module(): # Setup the DataModule batch_size = 4 train_dataset = data_helper.get_dataset(data_root="data-bin", mode="train") data_module = DetectionDataModule(train_dataset, batch_size=batch_size) assert data_module.batch_size == batch_size data_loader = data_module.train_dataloader() images, targets = next(iter(data_loader)) assert len(images) == batch_size assert isinstance(images[0], Tensor) assert len(images[0]) == 3 assert len(targets) == batch_size assert isinstance(targets[0], dict) assert isinstance(targets[0]["image_id"], Tensor) assert isinstance(targets[0]["boxes"], Tensor) assert isinstance(targets[0]["labels"], Tensor)