def plate_number(image_path): yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights("./checkpoints/yolov3_custom") # use keras weights image, bb = detect_image(yolo, image_path, '', input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255, 0, 0)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) c = np.array(bb[0][:4], dtype=np.int32) org_image = cv2.imread(image_path) cropped = org_image[c[1]:c[3], c[0]:c[2]] cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB) cropped = cv2.resize(cropped, (224, 224)) gray = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (7, 7), 0) binary = cv2.threshold(blur, 180, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] kernel3 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) thre_mor = cv2.morphologyEx(binary, cv2.MORPH_DILATE, kernel3) cont, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # creat a copy version "test_roi" of plat_image to draw bounding box test_roi = cropped.copy() # Initialize a list which will be used to append charater image crop_characters = [] # define standard width and height of character digit_w, digit_h = 30, 60 for c in sort_contours(cont): (x, y, w, h) = cv2.boundingRect(c) ratio = h / w if 3 <= ratio < 5: # Only select contour with defined ratio #if h/plate_image.shape[0]>=0.5: # Select contour which has the height larger than 50% of the plate # Draw bounding box arroung digit number cv2.rectangle(test_roi, (x, y), (x + w, y + h), (0, 255, 0), 2) # Sperate number and gibe prediction curr_num = thre_mor[y:y + h, x:x + w] curr_num = cv2.resize(curr_num, dsize=(digit_w, digit_h)) _, curr_num = cv2.threshold(curr_num, 220, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) crop_characters.append(curr_num) #print("Detect {} letters...".format(len(crop_characters))) final_string = '' for i, character in enumerate(crop_characters): title = np.array2string(predict_from_model(character)) final_string += title.strip("'[]") return final_string
def main(): webapi = WebAPI(IP_ADDR, PORT, ACCOUNT, PASSWORD) cameras = webapi.list_cameras() camera_ids = [camera['id'] for camera in cameras] # the last added camera in the Surveillance Station camera_id = camera_ids[-1] rtsp = webapi.get_liveview_rtsp(camera_id) fall_label = webapi.create_recording_label('fall_event') # Initialize fall detection model yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) load_yolo_weights(yolo, YOLO_V3_WEIGHTS) # use Darknet weights classes = read_class_names(YOLO_COCO_CLASSES) q = queue.Queue() p1 = threading.Thread(target=read_frame, args=([q, rtsp])) p2 = threading.Thread( target=process_frame, args=([q, webapi, camera_id, yolo, classes, fall_label])) p1.start() p2.start() p1.join() p2.join() webapi.logout()
def main(): # Inicialização # Carregar a rede neural YOLO time_start = datetime.now() checkpoints_path = "checkpoints/yolov3_C920-13all-50epochs_Tiny" yolo = Create_Yolo(input_size=416, CLASSES="model_data/classes.txt") yolo.load_weights(checkpoints_path) # cam = cv.VideoCapture(0) # cam.set(cv.CAP_PROP_FRAME_WIDTH, 1920) #FULL_HD # cam.set(cv.CAP_PROP_FRAME_HEIGHT, 1080) cv.namedWindow("Camera", cv.WINDOW_NORMAL) cv.namedWindow("PCB Left", cv.WINDOW_NORMAL) cv.namedWindow("PCB Right", cv.WINDOW_NORMAL) frame = cv.imread("/home/jacq/Documentos/datasets/C920HD-3-renamed/opencv_frame_80.png") # Isto aqui apenas para testar #print(frame.shape) # Loop infinito time_end = datetime.now() print("Tempo de carregamento do modelo: "+str(time_end-time_start)) while True: # ret, frame = cam.read() # if not ret: # print("failed to grab frame") # break cv.imshow("Camera", frame) k = cv.waitKey(1) if k%256 == 27: # ESC pressed #print("Escape hit, closing...") break elif k%256 == 32: # SPACE pressed # Chamada a função que processa o frame time_start = datetime.now() frame = cv.imread("/home/jacq/Documentos/datasets/C920HD-3-renamed/opencv_frame_80.png") # Isto aqui apenas para testar pcbR, pcbL = makeDetection(frame, yolo) #para esta função podemos passar modelo cv.imshow("PCB Left", pcbL) cv.imshow("PCB Right", pcbR) time_end = datetime.now() print("Tempo de processamento: "+str(time_end-time_start)) cv.destroyAllWindows()
def main(): yolo = Create_Yolo(input_size=416, CLASSES="tools/labels.txt") checkpoints_path = "checkpoints/yolov3_custom_Tiny" yolo.load_weights(checkpoints_path) # yolo.save('save/yolov3') yolo.save('save/yolov3.h5')
def process_recordings(q, webapi): # Initialize clothe category classifier cfg = Config.fromfile(CONFIG_FILE) landmark_tensor = torch.zeros(8) model = build_predictor(cfg.model) load_checkpoint(model, CHECKPOINT_FILE, map_location='cpu') print('model loaded from {}'.format(CHECKPOINT_FILE)) if USE_CUDA: model.cuda() landmark_tensor = landmark_tensor.cuda() model.eval() cate_predictor = CatePredictor(cfg.data.test, tops_type=[1]) # Initialize tracker model yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights while True: if q.empty(): time.sleep(1) continue recording_id, recording_filename = q.get() if recording_id == -1: break recording_filepath = os.path.join(RECORDINGS_DIRECTORY, recording_filename) Object_tracking(yolo, webapi, recording_id, recording_filepath, model, cate_predictor, landmark_tensor, iou_threshold=0.1, rectangle_colors=(255, 0, 0), Track_only=["person"])
ap_dictionary[class_name] = ap results_file.write("\n# mAP of all classes\n") mAP = sum_AP / n_classes text = "mAP = {:.3f}%, {:.2f} FPS".format(mAP * 100, fps) results_file.write(text + "\n") print(text) return mAP * 100 if __name__ == '__main__': if YOLO_CUSTOM_WEIGHTS != False: weights = YOLO_CUSTOM_WEIGHTS yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights(weights) else: if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights testset = Dataset('test', TEST_INPUT_SIZE=YOLO_INPUT_SIZE) get_mAP(yolo, testset, score_threshold=0.05, iou_threshold=0.50,
def main(): global TRAIN_FROM_CHECKPOINT gpus = tf.config.experimental.list_physical_devices('GPU') print(f'GPUs {gpus}') if len(gpus) > 0: try: tf.config.experimental.set_memory_growth(gpus[0], True) except RuntimeError: pass if os.path.exists(TRAIN_LOGDIR): shutil.rmtree(TRAIN_LOGDIR) writer = tf.summary.create_file_writer(TRAIN_LOGDIR) trainset = Dataset('train') testset = Dataset('test') steps_per_epoch = len(trainset) global_steps = tf.Variable(1, trainable=False, dtype=tf.int64) warmup_steps = TRAIN_WARMUP_EPOCHS * steps_per_epoch total_steps = TRAIN_EPOCHS * steps_per_epoch if TRAIN_TRANSFER: Darknet = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(Darknet, Darknet_weights) # use darknet weights yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, training=True, CLASSES=TRAIN_CLASSES) if TRAIN_FROM_CHECKPOINT: try: yolo.load_weights(TRAIN_FROM_CHECKPOINT) except ValueError: print("Shapes are incompatible, transfering Darknet weights") TRAIN_FROM_CHECKPOINT = False if TRAIN_TRANSFER and not TRAIN_FROM_CHECKPOINT: for i, l in enumerate(Darknet.layers): layer_weights = l.get_weights() if layer_weights != []: try: yolo.layers[i].set_weights(layer_weights) except: print("skipping", yolo.layers[i].name) optimizer = tf.keras.optimizers.Adam() def train_step(image_data, target): with tf.GradientTape() as tape: pred_result = yolo(image_data, training=True) giou_loss = conf_loss = prob_loss = 0 # optimizing process grid = 3 if not TRAIN_YOLO_TINY else 2 for i in range(grid): conv, pred = pred_result[i * 2], pred_result[i * 2 + 1] loss_items = compute_loss(pred, conv, *target[i], i, CLASSES=TRAIN_CLASSES) giou_loss += loss_items[0] conf_loss += loss_items[1] prob_loss += loss_items[2] total_loss = giou_loss + conf_loss + prob_loss gradients = tape.gradient(total_loss, yolo.trainable_variables) optimizer.apply_gradients(zip(gradients, yolo.trainable_variables)) # update learning rate # about warmup: https://arxiv.org/pdf/1812.01187.pdf&usg=ALkJrhglKOPDjNt6SHGbphTHyMcT0cuMJg global_steps.assign_add(1) if global_steps < warmup_steps: # and not TRAIN_TRANSFER: lr = global_steps / warmup_steps * TRAIN_LR_INIT else: lr = TRAIN_LR_END + 0.5 * (TRAIN_LR_INIT - TRAIN_LR_END) * ( (1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi))) optimizer.lr.assign(lr.numpy()) # writing summary data with writer.as_default(): tf.summary.scalar("lr", optimizer.lr, step=global_steps) tf.summary.scalar("loss/total_loss", total_loss, step=global_steps) tf.summary.scalar("loss/giou_loss", giou_loss, step=global_steps) tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps) tf.summary.scalar("loss/prob_loss", prob_loss, step=global_steps) writer.flush() return global_steps.numpy(), optimizer.lr.numpy(), giou_loss.numpy( ), conf_loss.numpy(), prob_loss.numpy(), total_loss.numpy() validate_writer = tf.summary.create_file_writer(TRAIN_LOGDIR) def validate_step(image_data, target): with tf.GradientTape() as tape: pred_result = yolo(image_data, training=False) giou_loss = conf_loss = prob_loss = 0 # optimizing process grid = 3 if not TRAIN_YOLO_TINY else 2 for i in range(grid): conv, pred = pred_result[i * 2], pred_result[i * 2 + 1] loss_items = compute_loss(pred, conv, *target[i], i, CLASSES=TRAIN_CLASSES) giou_loss += loss_items[0] conf_loss += loss_items[1] prob_loss += loss_items[2] total_loss = giou_loss + conf_loss + prob_loss return giou_loss.numpy(), conf_loss.numpy(), prob_loss.numpy( ), total_loss.numpy() mAP_model = Create_Yolo( input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) # create second model to measure mAP best_val_loss = 1000 # should be large at start for epoch in range(TRAIN_EPOCHS): for image_data, target in trainset: results = train_step(image_data, target) cur_step = results[0] % steps_per_epoch print( "epoch:{:2.0f} step:{:5.0f}/{}, lr:{:.6f}, giou_loss:{:7.2f}, conf_loss:{:7.2f}, prob_loss:{:7.2f}, total_loss:{:7.2f}" .format(epoch, cur_step, steps_per_epoch, results[1], results[2], results[3], results[4], results[5])) if len(testset) == 0: print("configure TEST options to validate model") yolo.save_weights( os.path.join(TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME)) continue count, giou_val, conf_val, prob_val, total_val = 0., 0, 0, 0, 0 for image_data, target in testset: results = validate_step(image_data, target) count += 1 giou_val += results[0] conf_val += results[1] prob_val += results[2] total_val += results[3] # writing validate summary data with validate_writer.as_default(): tf.summary.scalar("validate_loss/total_val", total_val / count, step=epoch) tf.summary.scalar("validate_loss/giou_val", giou_val / count, step=epoch) tf.summary.scalar("validate_loss/conf_val", conf_val / count, step=epoch) tf.summary.scalar("validate_loss/prob_val", prob_val / count, step=epoch) validate_writer.flush() print( "\n\ngiou_val_loss:{:7.2f}, conf_val_loss:{:7.2f}, prob_val_loss:{:7.2f}, total_val_loss:{:7.2f}\n\n" .format(giou_val / count, conf_val / count, prob_val / count, total_val / count)) if TRAIN_SAVE_CHECKPOINT and not TRAIN_SAVE_BEST_ONLY: save_directory = os.path.join( TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME + "_val_loss_{:7.2f}".format(total_val / count)) print("+++++++++++++++++++++++++++++++++++++++++++++++++++") yolo.save_weights(save_directory) if TRAIN_SAVE_BEST_ONLY and best_val_loss > total_val / count: save_directory = os.path.join(TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME) print("====================================================") yolo.save_weights(save_directory) best_val_loss = total_val / count if not TRAIN_SAVE_BEST_ONLY and not TRAIN_SAVE_CHECKPOINT: save_directory = os.path.join(TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME) print("?????????????????????????????????????????????????????????") yolo.save_weights(save_directory) print( "###################################################################################" ) print(".................................................................") # measure mAP of trained custom model mAP_model.load_weights(save_directory) # use keras weights get_mAP(mAP_model, testset, score_threshold=TEST_SCORE_THRESHOLD, iou_threshold=TEST_IOU_THRESHOLD)
results_file.write("\n# mAP of all classes\n") mAP = sum_AP / n_classes text = "mAP = {:.3f}%, {:.2f} FPS".format(mAP*100, fps) results_file.write(text + "\n") print(text) return mAP*100 if __name__ == '__main__': if YOLO_FRAMEWORK == "tf": # TensorFlow detection if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if YOLO_CUSTOM_WEIGHTS == False: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights elif YOLO_FRAMEWORK == "trt": # TensorRT detection saved_model_loaded = tf.saved_model.load(YOLO_CUSTOM_WEIGHTS, tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) yolo = saved_model_loaded.signatures['serving_default'] testset = Dataset('test', TEST_INPUT_SIZE=YOLO_INPUT_SIZE) get_mAP(yolo, testset, score_threshold=0.05, iou_threshold=0.50, TEST_INPUT_SIZE=YOLO_INPUT_SIZE)
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import random import time import tensorflow as tf from yolov3.yolov4 import Create_Yolo from yolov3.utils import detect_image from yolov3.configs import * while True: ID = random.randint(0, 200) label_txt = "mnist/mnist_test.txt" image_info = open(label_txt).readlines()[ID].split() image_path = image_info[0] yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") detect_image(yolo, image_path, "mnist_test.jpg", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0))
from yolov3.configs import * import time from deep_sort import nn_matching from deep_sort.detection import Detection from deep_sort.tracker import Tracker from deep_sort import generate_detections as gdet video_path = "./IMAGES/test.mp4" if YOLO_FRAMEWORK == "tf": # TensorFlow detection if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) if YOLO_CUSTOM_WEIGHTS != False: yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights else: load_yolo_weights(yolo, Darknet_weights) # use MS COCO weights elif YOLO_FRAMEWORK == "trt": # TensorRT detection saved_model_loaded = tf.saved_model.load(YOLO_CUSTOM_WEIGHTS, tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) yolo = saved_model_loaded.signatures['serving_default'] def Object_tracking(Yolo, video_path, output_path,
os.environ['CUDA_VISIBLE_DEVICES'] = '0' import sys foldername = os.path.basename(os.getcwd()) if foldername == "tools": os.chdir("..") sys.path.insert(1, os.getcwd()) import tensorflow as tf from yolov3.yolov4 import Create_Yolo from yolov3.utils import load_yolo_weights, Load_Yolo_model from yolov3.configs import * if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if YOLO_CUSTOM_WEIGHTS == False: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: #yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) #yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights yolo = Load_Yolo_model() yolo.summary() yolo.save(f'./checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}') print(f"model saves to /checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}")
from deep_sort.detection import Detection from deep_sort.tracker import Tracker from deep_sort import generate_detections as gdet import argparse import imutils ap = argparse.ArgumentParser() ap.add_argument('-i', '--input', required=True) ap.add_argument('-o', "--output", required=True) args = vars(ap.parse_args()) video_path = args["input"] output_path = args["output"] Darknet_weights = YOLO_V3_WEIGHTS yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) if YOLO_CUSTOM_WEIGHTS != False: yolo.load_weights(YOLO_CUSTOM_WEIGHTS) else: load_yolo_weights(yolo, Darknet_weights) max_cosine_distance = 0.5 nn_budget = None input_size = YOLO_INPUT_SIZE score_threshold = 0.5 iou_threshold = 0.45 track_obj = 'person' model_filename = 'model_data/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1)
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import cv2 import numpy as np import tensorflow as tf #from yolov3.yolov3 import Create_Yolov3 from yolov3.yolov4 import Create_Yolo from yolov3.utils import load_yolo_weights, detect_image, detect_video, detect_realtime from yolov3.configs import * if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS image_path = "./IMAGES/plate_2.jpg" video_path = "./IMAGES/test.mp4" yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights("./checkpoints/yolov3_custom") # use keras weights detect_image(yolo, image_path, "./IMAGES/plate_1_detect.jpg", input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0)) #detect_video(yolo, video_path, './IMAGES/detected.mp4', input_size=YOLO_INPUT_SIZE, show=False, CLASSES=TRAIN_CLASSES, rectangle_colors=(255,0,0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, CLASSES=TRAIN_CLASSES, rectangle_colors=(255, 0, 0))
text = "mAP = {:.3f}%, {:.2f} FPS".format(mAP * 100, fps) results_file.write(text + "\n") print(text) return mAP * 100 if __name__ == '__main__': if YOLO_FRAMEWORK == "tf": # TensorFlow detection if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if YOLO_CUSTOM_WEIGHTS == False: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights("./checkpoints/{}").format( TRAIN_MODEL_NAME) # use custom weights elif YOLO_FRAMEWORK == "trt": # TensorRT detection saved_model_loaded = tf.saved_model.load( "./checkpoints/{}".format(TRAIN_MODEL_NAME), tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) yolo = saved_model_loaded.signatures['serving_default'] testset = Dataset('test', TEST_INPUT_SIZE=YOLO_INPUT_SIZE)
def main(): NUM_CLASS = CLASSES yolo = Create_Yolo(input_size=416, CLASSES=CLASSES) yolo.load_weights(f"yolov3_custom_Tiny") cap = cv2.VideoCapture(0) if cap.isOpened(): current_digit = None video_thread = None video_names = os.listdir(VIDEOS_DIR) while True: _, frame = cap.read() image_h, image_w, _ = frame.shape # lt = time() bboxes = detect_digit(yolo, frame, CLASSES) bbox_thick = int(0.6 * (image_h + image_w) / 1000) if bbox_thick < 1: bbox_thick = 1 # fontScale = 0.75 * bbox_thick digits = [] for bbox in bboxes: coor = np.array(bbox[:4], dtype=np.int32) score = bbox[4] if score > 0.8: class_ind = int(bbox[5]) digit = NUM_CLASS[class_ind] if current_digit != digit: digits.append(digit) frame = cap.read()[1] (x1, y1), (x2, y2) = (coor[0], coor[1]), (coor[2], coor[3]) cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), bbox_thick * 2) for video_name in video_names: if digit == video_name.split('.')[0]: if video_thread and video_thread.is_alive(): video_thread.do_run = False video_thread.join() current_digit = None else: video_thread = Thread(target=show_video, args=(video_name, digit, frame, coor)) video_thread.start() current_digit = digit break if video_thread and not video_thread.is_alive(): current_digit = None k = cv2.waitKey(33) if k == 27: break cv2.imshow('frame', frame) else: print("Камера не найдена") cap.release() cv2.destroyAllWindows()
refID = [] try: file = open("sudoku/sudoku.names", "rt") lines = file.readlines() file.close() print(lines) for line in lines: line = line.strip() if not line == '': refID.append(line) except FileNotFoundError: print("Reference ID not found!") quit() yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) fname = f"./checkpoints/{TRAIN_MODEL_NAME}" print("weight = {}".format(fname)) yolo.load_weights(fname) # use keras weights print("weights loaded") webcam = cv2.VideoCapture("/dev/video0") webcam.set(cv2.CAP_PROP_FRAME_WIDTH, camWidth) webcam.set(cv2.CAP_PROP_FRAME_HEIGHT, camHeight) cv2.namedWindow("img", cv2.WINDOW_NORMAL) cv2.resizeWindow("img", camWidth * 3, camHeight) # -------- main loop -------
import numpy as np import tensorflow as tf from utils import setup_tf_conf setup_tf_conf() #from yolov3.yolov3 import Create_Yolov3 from yolov3.yolov4 import Create_Yolo from yolov3.utils import load_yolo_weights, detect_image, detect_video, detect_realtime from yolov3.configs import * if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS image_path = "./IMAGES/kite.jpg" video_path = "./IMAGES/test.mp4" yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights #detect_image(yolo, image_path, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0)) detect_video(yolo, video_path, './IMAGES/test_pred.mp4', input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255, 0, 0)) #detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0))
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import sys foldername = os.path.basename(os.getcwd()) if foldername == "tools": os.chdir("..") sys.path.insert(1, os.getcwd()) import tensorflow as tf from yolov3.yolov4 import Create_Yolo from yolov3.utils import load_yolo_weights from yolov3.configs import * if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if YOLO_CUSTOM_WEIGHTS == False: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights(YOLO_CUSTOM_WEIGHTS) # use custom weights yolo.summary() yolo.save(f'./checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}') print(f"model saves to /checkpoints/{YOLO_TYPE}-{YOLO_INPUT_SIZE}")