def run( data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' weights=ROOT / 'yolov5s.pt', # weights path imgsz=(640, 640), # image (height, width) batch_size=1, # batch size device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu include=('torchscript', 'onnx'), # include formats half=False, # FP16 half-precision export inplace=False, # set YOLOv5 Detect() inplace=True train=False, # model.train() mode optimize=False, # TorchScript: optimize for mobile int8=False, # CoreML/TF INT8 quantization dynamic=False, # ONNX/TF: dynamic axes simplify=False, # ONNX: simplify model opset=12, # ONNX: opset version verbose=False, # TensorRT: verbose log workspace=4, # TensorRT: workspace size (GB) nms=False, # TF: add NMS to model agnostic_nms=False, # TF: add agnostic NMS to model topk_per_class=100, # TF.js NMS: topk per class to keep topk_all=100, # TF.js NMS: topk for all classes to keep iou_thres=0.45, # TF.js NMS: IoU threshold conf_thres=0.25 # TF.js NMS: confidence threshold ): t = time.time() include = [x.lower() for x in include] tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports file = Path( url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # Load PyTorch model device = select_device(device) assert not ( device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0' model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model nc, names = model.nc, model.names # number of classes, class names # Checks imgsz *= 2 if len(imgsz) == 1 else 1 # expand opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12 assert nc == len( names), f'Model class count {nc} != len(names) {len(names)}' # Input gs = int(max(model.stride)) # grid size (max stride) imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples im = torch.zeros(batch_size, 3, *imgsz).to( device) # image size(1,3,320,192) BCHW iDetection # Update model if half: im, model = im.half(), model.half() # to FP16 model.train() if train else model.eval( ) # training mode = no Detect() layer grid construction for k, m in model.named_modules(): if isinstance(m, Conv): # assign export-friendly activations if isinstance(m.act, nn.SiLU): m.act = SiLU() elif isinstance(m, Detect): m.inplace = inplace m.onnx_dynamic = dynamic if hasattr(m, 'forward_export'): m.forward = m.forward_export # assign custom forward (optional) for _ in range(2): y = model(im) # dry runs shape = tuple(y[0].shape) # model output shape LOGGER.info( f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)" ) # Exports f = [''] * 10 # exported filenames warnings.filterwarnings( action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning if 'torchscript' in include: f[0] = export_torchscript(model, im, file, optimize) if 'engine' in include: # TensorRT required before ONNX f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose) if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify) if 'openvino' in include: f[3] = export_openvino(model, im, file) if 'coreml' in include: _, f[4] = export_coreml(model, im, file) # TensorFlow Exports if any(tf_exports): pb, tflite, edgetpu, tfjs = tf_exports[1:] if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 check_requirements( ('flatbuffers==1.12', )) # required before `import tensorflow` assert not ( tflite and tfjs ), 'TFLite and TF.js models must be exported separately, please pass only one type.' model, f[5] = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model if pb or tfjs: # pb prerequisite to tfjs f[6] = export_pb(model, im, file) if tflite or edgetpu: f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100) if edgetpu: f[8] = export_edgetpu(model, im, file) if tfjs: f[9] = export_tfjs(model, im, file) # Finish f = [str(x) for x in f if x] # filter out '' and None if any(f): LOGGER.info( f'\nExport complete ({time.time() - t:.2f}s)' f"\nResults saved to {colorstr('bold', file.parent.resolve())}" f"\nDetect: python detect.py --weights {f[-1]}" f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')" f"\nValidate: python val.py --weights {f[-1]}" f"\nVisualize: https://netron.app") return f # return list of exported files/dirs
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples # Input img = torch.zeros(opt.batch_size, 3, *opt.img_size).to( device) # image size(1,3,320,192) iDetection # Update model for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if isinstance( m, models.common.Conv): # assign export-friendly activations if isinstance(m.act, nn.Hardswish): m.act = Hardswish() elif isinstance(m.act, nn.SiLU): m.act = SiLU() # elif isinstance(m, models.yolo.Detect): # m.forward = m.forward_export # assign forward (optional) model.model[-1].export = not opt.grid # set Detect() layer grid export y = model(img) # dry run # TorchScript export try: print('\nStarting TorchScript export with torch %s...' % torch.__version__) f = opt.weights.replace('.pt', '.torchscript.pt') # filename ts = torch.jit.trace(model, img, strict=False) ts.save(f) print('TorchScript export success, saved as %s' % f) except Exception as e: print('TorchScript export failure: %s' % e)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only opt = parser.parse_args() opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand print(opt) set_logging() t = time.time() # Load PyTorch model device = select_device(opt.device) # add yolov5 folder to system path here = Path(__file__).parents[1].absolute() yolov5_folder_dir = str(here) sys.path.insert(0, yolov5_folder_dir) model = attempt_load(opt.weights, map_location=device) # load FP32 model labels = model.names # Checks gs = int(max(model.stride)) # grid size (max stride) opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples # Input img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection # Update model for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if isinstance(m, models.common.Conv): # assign export-friendly activations if isinstance(m.act, nn.Hardswish): m.act = Hardswish() elif isinstance(m.act, nn.SiLU): m.act = SiLU() # elif isinstance(m, models.yolo.Detect): # m.forward = m.forward_export # assign forward (optional) model.model[-1].export = not opt.grid # set Detect() layer grid export for _ in range(2): y = model(img) # dry runs print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)") # remove yolov5 folder from system path sys.path.remove(yolov5_folder_dir) # TorchScript export ----------------------------------------------------------------------------------------------- prefix = colorstr('TorchScript:') try: print(f'\n{prefix} starting export with torch {torch.__version__}...') f = opt.weights.replace('.pt', '.torchscript.pt') # filename ts = torch.jit.trace(model, img, strict=False) ts = optimize_for_mobile(ts) # https://pytorch.org/tutorials/recipes/script_optimized.html ts.save(f) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'{prefix} export failure: {e}') # ONNX export ------------------------------------------------------------------------------------------------------ prefix = colorstr('ONNX:') try: import onnx print(f'{prefix} starting export with onnx {onnx.__version__}...') f = opt.weights.replace('.pt', '.onnx') # filename torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # print(onnx.helper.printable_graph(model_onnx.graph)) # print # Simplify if opt.simplify: try: check_requirements(['onnx-simplifier']) import onnxsim print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') model_onnx, check = onnxsim.simplify(model_onnx, dynamic_input_shape=opt.dynamic, input_shapes={'images': list(img.shape)} if opt.dynamic else None) assert check, 'assert check failed' onnx.save(model_onnx, f) except Exception as e: print(f'{prefix} simplifier failure: {e}') print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'{prefix} export failure: {e}') # CoreML export ---------------------------------------------------------------------------------------------------- prefix = colorstr('CoreML:') try: import coremltools as ct print(f'{prefix} starting export with coremltools {ct.__version__}...') # convert model from torchscript and apply pixel scaling as per detect.py model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) f = opt.weights.replace('.pt', '.mlmodel') # filename model.save(f) print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') except Exception as e: print(f'{prefix} export failure: {e}') # Finish print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')